• Title/Summary/Keyword: dissolved agency

Search Result 65, Processing Time 0.034 seconds

A Study of Al(III) Hydrolysis Species Characterization under Various Coagulation Condition (응집 pH와 응집제 종류에 따른 Al(III)가수분해종 특성변화에 대한 연구)

  • Song, Yu-Kyung;Jung, Chul-Woo;Sohn, In-Shik
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.958-967
    • /
    • 2006
  • The overall objective of this research was to find out the role of rapid mixing conditions in the species of hydrolyzed Al(III) formed by Al(III) coagulants and to evaluate the distribution of hydrolyzed Al(III) species by coagulant dose and coagulation pH. When an Al(III) salt was added to water, monomers, polymers and solid precipitates may form. Different Al(III) coagulants (alum and PSOM) show to have different Al(III) species distribution over a rapid mixing condition. During the rapid mixing period, for alum, formation of dissolved AI(III) (monomer and polymer) increases, but for PSOM, precipitates of $Al(OH)_{3(S)}$ increases rapidly. During the rapid mixing period, for high coagulant dose, Al-ferron reaction increases rapidly. The kinetic constants, Ka and Kb, derived from AI-ferron reaction. The kinetic constants followed very well the defined tendencies for coagulation condition. For pure water, when the rapid mixing time increased, the kinetic constants, Ka and Kb showed lower values. Also, for raw water, when the rapid mixing time increased, the kinetic constants, Ka and Kb showed lower values. At A/D(Adsorption and Destabilization) and sweep condition, both $Al(OH)_{3(S)}$ and dissolved Al(III) (monomer and polymer) exist, concurrent reactions by both mechanism appear to cause simultaneous precipitation.

Assessment of Monitored Natural Attenuation as Remediation Approach for a BTEX Contaminated Site in Uiwang City (의왕시내 BTEX 오염 부지에서의 자연 정화법 이용 적합성 고찰)

  • 이민효;윤정기;박종환;이문순;강진규;이석영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1999.04a
    • /
    • pp.149-156
    • /
    • 1999
  • In the United States (U.S.), the monitored natural attenuation (MNA) approach has been used as an alternative remedial option for organic and inorganic compounds retained in soil and dissolved in groundwater. The U.S. Environmental Protection Agency (EPA) defines the MNA as“in-situ naturally-occurring processes include biodegradation, diffusion, dilution, sorption, volatilization, and/or chemical and biochemical stabilization of contaminants and reduce contaminant toxicity, mobility or volume to the levels that are protective of human health and the environment”. The Department of Soil Environment. National Institute Environmental Research (NIER) is in the process for demonstrating the MNA approach as a potential remedial option for the BTEX contaminated site in Uiwang City. The project is charactering the research site in terms of the nature and extend of contamination, biological degradation rate, and geochemical and hydrological properties. The microbial-degradation rate and effectiveness of nutrient and redox supplements will be determined through laboratory batch and column tests. The geochemical process will be monitored for determining the concentration changes of chemical species involved in the electron transfer processes that include methanogenesis, sulfate and iron reduction, denitrification, and aerobic respiration. Through field works, critical soil and hydrogeologic parameters will be acquired to simulate the effects of dispersion, advection, sorption, and biodegradation on the fate and transport of the dissolved-phase BTEX plume using Bioplume III model. The objectives of this multi-years research project are (1) to evaluate the MNA approach using the BTEX contaminated site in Uiwang City, (2) to establish a standard protocol for future application of the approach, (3) to investigate applicability of the passive approach as a secondary treatment remedy after active treatments. In this presentation, the overall picture and philosophy behind the MNA approach will be reviewed. Detailed discussions of the site characterization/monitoring plans and risk-based decision-making processes for the demonstration site will be included.

  • PDF

Review of Analytical and Assessment Techniques of Terminal Electron Accepting Processes (TEAPs) for Site Characterization and Natural Attenuation in Contaminated Subsurface Environments (오염 지중환경 특성화와 자연저감평가를 위한 말단전자수용과정(TEAPs) 분석 및 평가기술 소개)

  • Song, Yun Sun;Kim, Han-Suk;Kwon, Man Jae
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.2_spc
    • /
    • pp.1-15
    • /
    • 2020
  • Monitoring and assessing terminal electron accepting processes (TEAPs) are one of the most important steps to remediate contaminated sites via various in-situ techniques. TEAPs are a part of the microbial respiration reactions. Microorganisms gain energy from these reactions and reduces pollutants. Monitoring TEAPs enables us to predict degradability of contaminants and degradation rates. In many countries, TEAPs have been used for characterization of field sites and management of groundwater wells. For instance, US Environmental Protection Agency (EPA) provided strategies for groundwater quality and well management by applying TEAPs monitoring. Denmark has also constructed TEAPs map of local unit area to develop effective groundwater managing system, particularly to predict and assess nitrogen contamination. In case of Korea, although detailed soil survey and groundwater contamination assessment have been employed, site investigation guidelines using TEAPs have not been established yet. To better define TEAPs in subsurface environments, multiple indicators including ion concentrations, isotope compositions and contaminant degradation byproducts must be assessed. Furthermore, dissolved hydrogen concentrations are regarded as significant evidence of TEAPs occurring in subsurface environment. This review study introduces optimal sampling techniques of groundwater and dissolved hydrogen, and further discuss how to assess TEAPs in contaminated subsurface environments according to several contamination scenarios.

Characteristics of the Yellowish-Green-Colored Water-Zone in the Nakdong Estuary (洛東江 河口域에 出現하는 黃록色 水色帶의 特性에 關한 硏究)

  • Park, Young-Kwan;Oh, Youn-Keun;Park, Chung-Kil
    • 한국해양학회지
    • /
    • v.20 no.3
    • /
    • pp.30-36
    • /
    • 1985
  • Water quality of seawater samples from ten stations was measured and analyzed to study the causes and the characteristics of the yellowish-green-colored zone in the Nakdong Estuary in February, May, August and October, 1984. The color of the yellowish-green-colored zone was equivalent to the grade 7 according to the Forel water-color meter and was observable throughout the year. The characteristics of the zone were low in transparency and high in the concentration of suspended solids, and about 52% of the suspended solids consisted of volatile substances. The chlorophyll a contents ranged from 0.4mg/$m^3$ to 51.0mg/$m^3$ and dissolved oxygen was in a state of supersaturation within the yellowish-green-colored zone. Nutrient concentrations were higher within the colored zone than the outside. Positive correlation was observed between tne concentrations of nutrients and chlorophyll a. Our results showed that the signficant portion of suspended solids sampled from the yellowish-green-colored zone consisted of phytoplanktons of which bloom was possibly induced by inflow of the nutrient-rich Nakdong River water.

  • PDF

Ecological Risk Assessment based on Watershed System Assimilative Capacity in take Texoma, Texas-Oklahoma, USA (유역시스템 정화력을 고려한 생태위해성평가 사례연구: Lake Texoma Watershed (TX&OK, USA)를 대상으로)

  • An, Youn-Joo;Donald H. Kampbell;Guy W. Sewell
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.27-27
    • /
    • 2003
  • Lake Texoma is located on the border of southern Oklahoma and northern Texas. It has 93,000 surface acres, and is a focus of the recreation, and farming industries in the region. There are potential stressors around the Lake Texoma watershed that may cause adverse ecological effects in the lake. System assimilative capacity (SAC) is the ability of abiotic and biotic processes to atteuniate the stressors. SAC Exceeded indicates potential of occuring adverse eco-effects. A number of representative chemical release sites and stressor sources in the surrounding watershed were characterized, and several impact sites having stressors sources, such as being near agriculture, landfills, housing areas, oil production fields and heavy use recreational activity, were selected for surface water, sediment, and groundwater monitoring. A paired reference site, having similar physical characteristics as its impact site, was also chosen based on its proximity to the impact site. Lake water samples were collected at locations identified as marina entrance, gasoline filling station, and boat dock at five marinas selected on Lake Texoma from September 1999 to December 2001. Paired water and sediment samples were also collected. Groundwater samples were collected at about 70 producing monitoring wells. Water quality parameters measured were inorganics (nitrate, nitrite, orthophosphate, ammonia, sulfate, and chloride), dissolved methane, total organic carbon (TOC) (or DOC), volatile organic compounds (VOCs) such as methyl tert-butyl ether (MTBE) and BTEX, and a suite of metals. Biotic communities were evaluated at impact and reference sites. Five basic components were measured; two terrestirial components (plants and bird comminitires) and three aquatic components (benthic inverbrates, litteral-zone fishes, ecosystem attribures). Potential impacts to these comminites were evaluated.

  • PDF

Annual Change and C:N:P ratio in Particulate Organic Matter in Chinhae Bay, Korea (한국진해만 입자유기물 함량과 C:N:P 비의 연변화)

  • LEE, PIL-YONG;KANG, CHANG-KEUN;PARK, JONG-SOO;PARK, JOO-SUCK
    • 한국해양학회지
    • /
    • v.29 no.2
    • /
    • pp.107-118
    • /
    • 1994
  • An investigation of the annual change and C:N:P ratio in particulate organic matter (POM) in Chinhae Bay, a semi-enclosed bay of the southern coast of Korean Peninsula, was carried out for a period of 12 months between January and December, 1993. The concentrations of POM have a broad range: 198∼4,416 ugC/l, 24∼792 ugN/l and 4.5∼69.0 ugP/l, Marked seasonal changes of POM, particularly particulate organic carbon (POC) and nitrogen (PON), were observed in the surface water. Generally, the concentration of POM peaks in summer. The C:N:P composition ratio of particulate organic matter, which is high in summer, also shows a seasonal change. The C:N assimilation ratio is constant at 6.53, which is consistent with the Redfield ratio. The significant linear relationship between POM and chlorophyll-a in the surface water during the survey period (except for January and February) and the C:N ratio suggest that the concentration of POM is controlled by phytoplankton biomass. POM peaks in summer, a period characterized by high freshwater input and the strong stratification, as a result of the intense proliferation of phytoplankton by a large amount of nutrient loading from the tributaries. On the other hand, the high C:P and N:P ratios in summer indicate that P is limited for phytoplankton growth owing to N-enrichment from a high input of freshwater with a high dissolved inorganic N:P ratio.

  • PDF

DGA Interpretation of Oil Filled Transformer Condition Diagnosis

  • Alghamdi, Ali Saeed;Muhamad, Nor Asiah;Suleiman, Abubakar A.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.5
    • /
    • pp.229-232
    • /
    • 2012
  • DGA is one of the most recent techniques developed to diagnose the fault condition on oil filled insulation transformers. There are more than 6 known different methods of DGA fault interpretation technique and so there is the likelihood that they may vary in their interpretations. A series of combined interpretation methods that can determine the power transformer condition faults in one assessment is therefore needed. This paper presents a computer program- based system developed to combine four DGA assessment techniques; Rogers Ratio Method, IEC Basic Ratio Method, Duval Triangle method and Key Gas Method. An easy to use Graphic User Interface was designed to give a visual display of the four techniques. The result shows that this assessment method can increase the accuracy of DGA methods by up to 20% and the no prediction result had been reduced down to 0%.

A Study on Changes of Water Quality in River by Hydrologic Factors -QUAL2E Model Application- (수문인자에 의한 하천 수질 변화에 관한 연구 -QUAL2E 모형 중심으로-)

  • 유희정
    • Water for future
    • /
    • v.26 no.3
    • /
    • pp.75-85
    • /
    • 1993
  • In this study, reach boundaries in QUAL2E Model were set by the locations of point-waste discharge or tributary input and measured or direct calculated hydrologic factors were used in computation as much as possible. South Platte Experimental River in Colorado, USA was selected as a target river and data collected during September 1991 and January 1992 periods were used for calibration and verification, respectively. Constituents modeled in this study are 5-day carbonaceous biochemical oxygen demand(CBOD$) and dissolved oxygen(DO). The good agreement was obtained between a calculated using this model and observed, less than 5% to DO and about 20% to CBOD$. According to the result of water-quality prediction, experimental river is classified as the 4th category by the criteria of environmental protection agency in the USA in 2001.

  • PDF

Dehydration of a Coal Mine Drainage Sludge for the Potential Landfill Cover (탈수 처리된 석탄 광산 슬러지의 복토재 재활용방안)

  • Cui, Ming-Can;Lim, Jung-Hyun;Phyung, Yeaui;Jang, Min;Shim, Yon-Sik;Khim, Jee-Hyeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.5
    • /
    • pp.324-329
    • /
    • 2008
  • A coal mine drainage sludge(designated as CMDS) is mainly generated during physicochemical treatment or electrical purification of the drainage abandoned mine that include dissolved heavy metal. To understand the possibility of an application of the dehydrated CMDS as the landfill cover medium of hygienic a reclaimed ground, an laboratory experiment was performed to investigate the physicochemical and geoengineering characteristics of the dehydrated CMDS. To improve the geoengineering characteristics of the dehydrated CMDS, the liquid limit, plasticity limit test, compaction method test, strength test, and hydraulic conductivity test ware performed with the lithification material mixed sludge. When the mixed ratio of the sludge and the lithification material was more than 1:06, the compaction method was A method, the moisture content less than 33.5%, the strength of mixed sludge was $8.2kg\;cm^{-2}$, the hydraulic conductivity was $2.7\times10^{-6}cm\;sec^{-1}$, the sludge was up to the landfill standard of US Environmental Protection Agency (US EPA).

Microstructure and Mechanical Properties in Al-Li-(Be) Alloys. (Al-Li-(Be)합금 주괴의 미세조직과 기계적 성질)

  • Eun, Il-Sang;Cho, Hyun-Kee
    • Journal of Korea Foundry Society
    • /
    • v.10 no.5
    • /
    • pp.417-425
    • /
    • 1990
  • The purpose of this study is to investigate the effect of Be addition on the microstructure and mechanical properties of as-cast and homogenization treated Al-Li-(Be)alloys. The ductility of as-cast Al-Li alloy was increased by the addition of Be and the fracture morphology was changed from brittle to ductile mode. Also, hardness and strength have been decreased by homogenization treatment. The morphology of eutectic structure which consists of ${\alpha}(Al)$ and ${\alpha}(Be)$ was changed from lammellae to spherical type by homogenization treatment. The shape of ${\alpha}(Be)$ phase has been revealed as hollow type by TEM observation. It consists of outer surfaces with well defined crystal facets and the core filled with ${\alpha}(Al)$. The microstructure of as-cast Al-Li-Be alloys showed coarse ${\delta}'$, fine ${\delta}'$, and coarse ${\delta}$ phases. The coarse and fine ${\delta}'$ phases were formed at Be-rich phase /matrix interfaces and in matrix, respectively. By homogenization treatment, the ${\delta}$ phase in Al-Li and Al-Li-Be alloys dissolved and the size of ${\delta}$ phase in Al-Li-Be alloys was finer than that of Al-Li alloy.

  • PDF