• Title/Summary/Keyword: dissolution

Search Result 2,190, Processing Time 0.033 seconds

Effect of Carrier on Dissolution Characteristics of Indomethacin from its Coprecipitates (Indomethacin Coprecipitate 중 Indomethacin 용출(溶出)에 미치는 Carrier의 영향(影響))

  • Ku, Young-Soon;Ahn, Young-Mee
    • Journal of Pharmaceutical Investigation
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 1984
  • Effects of water soluble carrier on the dissolution characteristics of indomethacin coprecipitates were investigated. Water soluble carriers used were polyvinylpyrrolidone, dextrose, mannitol and their mixtures of various ratios. The dissolution rates of indomethacin from coprecipitate with ratios of drug-to-carrier, kinds of carrier and ratios of carriers were as follows: 1. The dissolution rates increased proportionally to the ratios of carrier in the case of both single and combined carrier, and the dissolution rate of coprecipitate with the combined carrier was more rapid than that with single carrier. 2. The combined carrier of PVP-dextrose (1 : 2) in the case of the coprecipitate of drug-to carrier (1 : 1) and PVP-dextrose (4 : 1) in the case of the coprecipitate of drug-to carrier (1 : 3) yield the most rapid dissolution rate. 3. The dissolution rate of indomethacin was the most markedly enhanced in the case of the combined carrier of PVP and dextrose.

  • PDF

Effects of Hydrodynamic Condition on DNAPL Dissolution: Experimental Observation

  • 김용철;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.57-59
    • /
    • 2002
  • The dissolution process of NAPLs is significantly important in predicting the transport and/or fate of the contaminants and designing remedial systems. In this research, experimental observations on dissolution of TCE pool under various hydrodynamic conditions are done using an aquifer model. Hydrodynamic parameters such as linear pore velocity and dispersion coefficient are estimated from the results of preliminary tracer tests using bromide as conservative tracer before doing the TCE dissolution experiments. It is found that hydrodynamic parameters are distinctly affected by the clay lens imbeded in the aquifer model. Nonequilibrium and transient dissolution rates are observed from the results of TCE dissolution experiments.

  • PDF

Preparation and Characterization of Water-Soluble Glass through Melting Process (I) : Dissolution Characteristics, Bactericidal Effects and Cytotoxicity (용융법에 의한 수용성 유리의 제조 및 특성 (I) : 용해 특성, 살균 효과 및 세포 독성)

  • 조종호;이용근;최세영;신철수;김경남
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.10
    • /
    • pp.1093-1102
    • /
    • 1995
  • Water-soluble phosphate glasses containing Ag or Cu ion were prepared through melting process. Then the powdered glass samples were dissolved in D.I. water at room temperature with changing the dissolution time. In terms with the glass composition, dissolution characteristics, bactericidal effects and cytotoxicities were investigated. Dissolved amounts increased uniformly with dissolution time, and the dissolution rate was higher for ternary glass than for binary glass and with less metal oxide amount. And the dissolution rate of the glass with Ag ion was higher than that with Cu ion, and the bactericidal effect of the glass with Ag ion was also greater. Solution with more than 25 ppm of Ag was observed to have strong cytotoxicity to L929, and solutions of lower Ag concentration or with Cu seemed to have little cytotoxicity.

  • PDF

Dissolution Characteristics of ph-Dependent Antacid Granules Agglomerated in High Speed Agitation Type Speed Agitation Type Granulator

  • Choi, Woo-Sik;Lee, Jung-Sun
    • Archives of Pharmacal Research
    • /
    • v.18 no.5
    • /
    • pp.314-319
    • /
    • 1995
  • Antacid granules were prepared by agglomeration and powder method in high speed agitation type granulator. The copmositions of the test antacids were sodium bicarbonate nad magnesium carbonate nad a coating material was powder of polyvinylacetal diethyl-aminocacetate (AEA) and an additive material was talc powder. The dissolution characteristics of base from the antacid granules were investigated to evaluate neutralization capacity of hydrochloric profile of base and neutralization behavior, the following results were obtained : The prepared granules showed a pH-dependent dissolution pattern of a base. The dissolution profile of a base was varied with addition of talc powder as well as coating amount of AEA. The relationship between the ratio of dissolution retarded time for 20% and 10% AEA. The relationship between the ratio of dissolution retarded time for 20% AEA coated granules $\theta_{20}/\theta_{10}$ and the diameter reduction of the granules was explained by the rate process of neutralization of hydrochloric acid.

  • PDF

The Relationship of in vitro Dissolution and Intestinal Membrane Permeability with in vivo Bioavailability (시험관내 용출 및 장관막 투과도와 생체이용률과의 상관성)

  • 서수경;손수정;박인숙;최기환;김순선;유태무;조혜영;이용복;김동섭
    • YAKHAK HOEJI
    • /
    • v.44 no.5
    • /
    • pp.424-431
    • /
    • 2000
  • A biopharmaceutics drug classification system for correlation between in vitro dissolution and in vivo bioavailability is proposed based on recognizing that drug dissolution and gastrointestinal permeability are the fundamental parameters controlling the rate and extent of drug absorption. The objective of this study was to assess whether in vitro dissolution profiles of immediate-release beta-blocker tablets can be correlated with intestinal membrane permeability and/or in vivo bioavailability In vitro dissolution of the beta-blocker tablets was examined using KP VII Apparatus II methods at various pH. Intestinal membrane permeability was determined in vitro using the diffusion chamber method. Bioavailablity parameters were cited from literatures. The dissolution profiles did not accurately represent the in vivo bioavailablity However there were good correlations between intestinal membrane permeability and log P (noctanol/buffer). The correlations obtained in this study indicated that in vitro diffusion chamber method could be used to predict intestinal absorption in vivo.

  • PDF

Modeling of Dissolution Potential of Diesel Components (Diesel 용출에 따른 지하수 오염물질의 거동)

  • 김낙경;김현성;염익태
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.577-584
    • /
    • 2003
  • This study investigated the modeling of dissolution Diesel to estimate the behavior of contaminants in the ground. The modeling based on the initial concentration change considering dissolution potential of pure Diesel and Xylene was performed using VISUAL MODFLOW, and was compared with general modeling ignored the initial concentration change condition.

  • PDF

Development of Dissolution Testing Method for Piracetam Tablets and Fenoterol Hydrobromide Tablets in Korean Pharmaceutical Codex (고시 수재 의약품 중 피라세탐 정 및 브롬화수소산페노테롤 정의 용출시험법 개발)

  • Kim, Eun-Jung;Lee, Jin-Ha;Park, Chan-Ho;Sohn, Kyung-Hee;Kim, In-Kyu;Kim, Dong-Sup;Sah, Hong-Kee;Choi, Hoo-Kyun
    • YAKHAK HOEJI
    • /
    • v.55 no.4
    • /
    • pp.324-331
    • /
    • 2011
  • Although the dissolution test can serve as an effective tool for quality control and predictor of in vivo performance, there are a number of drugs with no established dissolution specifications in Korean Pharmaceutical Codex (KPC). Among those commercially available, Piracetam Tablets and Fenoterol hydrobromide Tablets were selected to develop the dissolution testing method. The dissolution condition was determined based on the "Guidelines on Specifications of Dissolution tests for Oral dosage forms" of Korea Food & Drug Administration (KFDA). The dissolution test for Piracetam Tablets was carried out under sink condition with distilled water as dissolution medium, paddle rotation speed at 50 rpm and medium volume of 900 ml. More than 80% of its label claim was released within 30 min. In case of Fenoterol hydrobromide Tablets, distilled water was also found to be suitable to ensure sink condition. The rotation speed of 50 rpm and 900 ml of dissolution medium were used to evaluate the dissolution profile. The dissolution rate of fenoterol hydrobromide was over 90% in 15 min. The HPLC analysis methods were validated in terms of accuracy, precision, specificity, linearity, quantitation limit and range. The results suggested that the analytical methods used are simple and suitable to measure the dissolution rate of piracetam and fenoterol hydrobromide. Therefore, the analysis methods could be utilized in setting dissolution specifications of Piracetam Tablets and Fenoterol hydrobromide Tablets in the revised version of KPC.

Effect of trace amount of ferrous and ferric ions on the dissolution of iron plate in magnetically treated 3% sodium chloride solution

  • Chiba, Atsushi;Ohki, Tomohiro;Wu, Wen-Chang
    • Corrosion Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.45-50
    • /
    • 2005
  • A 3% NaCl solution of 1 $dm^3$ circulated with 1.5 $dm^3/min$ by a pump for 24 h in the presence of magnetic field. An iron plate immersed in a $100cm^3$ of test solution for 24 h. The rest potential and pH on surface fixed after 3 h. Containing 0~120 ppm of Fe(II) ion, the dissolution in the magnetically treated solution rose comparing with that in the non-magnetically treated solution. The dissolution amount reached to maximum at 50 ppm, then fixed in the non-magnetically treated solution. When Fe(II) ion existed in the magnetically treated solution, dissolution accelerated a little. In the non-magnetic treated solution containing 10~125 ppm of Fe(III) ion existed, the dissolution accelerated. The dissolution amounts reached to maximum at 50 ppm, then decreased from maximum value. In the magnetically treated solution, the dissolution amounts reached to minimum until 50 ppm, then increased from minimum value. The dissolution amounts affected larger with increasing of magnetic flux density. Fe(II), Fe(III) ions and magnetic treatment affected to formation of $Fe(OH)_2$ and/or $Fe_3O_4$ films. The magnetically treated effects memorized about one month.

Effects of Temperature and Pressure on Quartz Dissolution

  • Choi, Jung-Hae;Chae, Byung-Gon;Kim, Hye-Jin
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Deep geological disposal is the preferred storage method for high-level radioactive waste, because it ensures stable long-term storage with minimal potential for human disruption. Because of the risk of groundwater contamination, a buffer of steel and bentonite layers has been proposed to prevent the leaching of radionuclides into groundwater. Quartz is one of the most common minerals in earth's crust. To understand how deformation and dissolution phenomena affect waste disposal, here we study quartz samples at pressure, temperature, and pH conditions typical of deep geological disposal sites. We perform a dissolution experiment for single quartz crystals under different pressure and temperature conditions. Solution samples are collected and the dissolution rate is calculated by analyzing Si concentrations in a solution excited by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). After completing the dissolution experiment, deformation of the quartz sample surfaces is investigated with a confocal laser scanning microscope (CLSM). An empirical formula is introduced that describes the relationship between dissolution rate, pressure, and temperature. These results suggest that bentonite layers in engineering barrier systems may be vulnerable to thermal deformation, even when exposed to higher temperatures on relatively short timescales.

Three-dimensional Computational Modeling and Simulation of Intergranular Corrosion Propagation of Stainless Steel

  • Igarashi, T.;Komatsu, A.;Motooka, T.;Ueno, F.;Yamamoto, M.
    • Corrosion Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.105-111
    • /
    • 2021
  • In oxidizing nitric acid solutions, stainless steel undergoes intergranular corrosion accompanied by grain dropping and changes in the corrosion rate. For the safe operation of reprocessing plants, this mechanism should be understood. In this study, we constructed a three-dimensional computational model using a cellular automata method to simulate the intergranular corrosion propagation of stainless steel. The computational model was constructed of three types of cells: grain (bulk), grain boundary (GB), and solution cells. Model simulations verified the relationship between surface roughness during corrosion and dispersion of the dissolution rate of the GB. The relationship was investigated by simulation applying a constant dissolution rate and a distributed dissolution rate of the GB cells. The distribution of the dissolution rate of the GB cells was derived from the intergranular corrosion depth obtained by corrosion tests. The constant dissolution rate of the GB was derived from the average dissolution rate. Surface roughness calculated by the distributed dissolution rates of the GBs of the model was greater than the constant dissolution rates of the GBs. The cross-sectional images obtained were comparable to the corrosion test results. These results indicate that the surface roughness during corrosion is associated with the distribution of the corrosion rate.