• Title/Summary/Keyword: dissipation of impact energy

Search Result 93, Processing Time 0.02 seconds

Vibration Reduction Effect and Structural Behavior Analysis for Column Member Reinforced with Vibration Non-transmissible Material (진동절연재로 보강된 기둥부재의 진동저감효과 및 구조적 거동분석)

  • Kim, Jin-Ho;Yi, Na-Hyun;Hur, Jin-Ho;Kim, Hee-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.94-103
    • /
    • 2016
  • For elevated railway station on which track is connected with superstructure of station, structural vibration level and structure-borne-noise level has exceeded the reference level due to structural characteristics which transmits vibration directly. Therefore, existing elevated railway station is in need of economical and effective vibration reduction method which enable train service without interruption. In this study, structural vibration non-transmissible system which is applied to vibroisolating material for column member is developed to reduce vibration. That system is cut covering material of the column section using water-jet method and is installed with vibroisolating material on cut section. To verify vibration reduction effect and structural performance for structural vibration non-transmissible system, impact hammer test and cyclic lateral load test are performed for 1/4 scale test specimens. It is observed that natural period which means vibration response characteristics is shifted, and damping ratio is increased about 15~30% which means that system is effective to reduce structural vibration through vibration test. Also load-displacement relation and stiffness change rate of the columns are examined, and it is shown that ductility and energy dissipation capacity is increased. From test results, it is found that vibration non-transmissible system which is applied to column member enable to maintains structural function.

A Study on the Preparation and Purification Characteristics of Graphene Oxide by Graphite Type (흑연 종류에 따른 산화 그래핀의 제조 및 정제를 통한 특성연구)

  • Jeong, Kyeom;Kim, Young-Ho
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.132-138
    • /
    • 2021
  • Research is being conducted on graphene to provide graphene having both excellent physical as well as electrical properties in addition to unique physical properties. In this study, Hummer's method, which is a representative method for chemical exfoliation, was applied in order to investigate the possibility of the mass production of high-quality graphene oxide. Three types of graphite (graphite, crystalline graphite, and expanded graphite) were used in the preparation of graphene oxide with variations in the amount of potassium permanganate added, reaction temperature, and reaction time. Then a Fourier transform infrared spectroscopy (FT-IR), a Raman spectrometer, and a transmission electron microscope (TEM) were used to measure the quality of the prepared graphene oxide. Of the three types of graphite used in this experiment, crystalline graphite showed the highest quality. The prepared graphene oxide was then purified with an organic solvent, and an analysis conducted using energy dispersive X-ray spectroscopy (EDS). From the results of the residual values, we were able to confirm that both acid wastewater and wastewater were best purified using cyclohexane. The method for manufacturing graphene oxide as well as the method of purification using organic solvents that are presented in this study are expected to have less of an environmental impact, making them environmentally friendly. This makes them suitable for use in various industrial fields such as the film industry and for heat dissipation and as coating agents.

Hysteretic characteristics of steel plate shear walls: Effects of openings

  • Ali, Mustafa M.;Osman, S.A.;Yatim, M.Y.M.;A.W., Al Zand
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.687-708
    • /
    • 2020
  • Openings in steel plate shear walls (SPSWs) are usually used for decorative designs, crossing locations of multiple utilities and/or structural objectives. However, earlier studies showed that generating an opening in an SPSW has a negative effect on the cyclic performance of the SPSW. Therefore, this study proposes tripling or doubling the steel-sheet-plate (SSP) layer and stiffening the opening of the SPSW to provide a solution to undesirable opening effects, improve the SPSW performance and provide the infill option of potential strengthening measures after the construction stage. The study aims to investigate the impact of SSP doubling with a stiffened opening on the cyclic behaviour, expand the essential data required by structural designers and quantify the SPSW performance factors. Validated numerical models were adopted to identify the influence of the chosen parameters on the cyclic capacity, energy dissipation, ductility, seismic performance factors (SPF) and stiffness of the suggested method. A finite Element (FE) analysis was performed via Abaqus/CAE software on half-scale single-story models of SPSWs exposed to cyclic loading. The key parameters included the number of SSP layers, the opening size ratios corresponding to the net width of the SSP, and the opening shape. The findings showed that the proposed assembly method found a negligible influence in the shear capacity with opening sizes of 10, 15, 20%. However, a deterioration in the wall strength was observed for openings with sizes of 25% and 30%. The circular opening is preferable compared with the square opening. Moreover, for all the models, the average value of the obtained ductility did not show substantial changes and the ultimate shear resistance was achieved after reaching a drift ratio of 4.36%. Additionally, the equivalent sectional area of the SSP in the twin and triple configuration of the SPSWs demonstrated approximately similar results. Compared with the single SSP layer, the proposed configuration of the twin SSP layer with a stiffened opening suggest to more sufficiency create SSP openings in the SPSW compared to that of other configurations. Finally, a tabular SPF quantification is exhibited for SPSWs with openings.