• Title/Summary/Keyword: dissimilar metal weld

Search Result 139, Processing Time 0.023 seconds

Investigation into Variations of Welding Residual Stresses and Redistribution Behaviors for Different Repair Welding Widths (보수용접부 폭에 따른 용접잔류응력의 변화 및 재분배 거동 평가)

  • Park, Chi-Yong;Lee, Hwee-Sueng;Huh, Nam-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.177-184
    • /
    • 2014
  • In this study, we investigated the variations in welding residual stresses in dissimilar metal butt weld due to width of repair welding and re-distribution behaviors resulting from similar metal welding (SMW) and mechanical loading. To this end, detailed two-dimensional axi-symmetric finite element (FE) analyses were performed considering five different repair welding widths. Based on the FE results, we first evaluated the welding residual stress distributions in repair welding. We then investigated the re-distribution behaviors of the residual stresses due to SMW and mechanical loads. It is revealed that large tensile welding residual stresses take place in the inner surface and that its distribution is affected, provided repair welding width is larger than certain value. The welding residual stresses resulting from repair welding are remarkably reduced due to SMW and mechanical loading, regardless of the width of the repair welding.

Studies on weldment performance of Ti/Al dissimilar sheet metal joints using laser beam welding

  • Kalaiselvan, K.;Elango, A.;Nagarajan, N.M.;Mathiazhagan, N.;Vignesh, Kannan
    • Coupled systems mechanics
    • /
    • v.7 no.5
    • /
    • pp.627-634
    • /
    • 2018
  • Laser beam welding is more advantageous compared to conventional methods. Titanium/Aluminium dissimilar alloy thin sheet metals are difficult to weld due to large difference in melting point. The performance of the weldment depends upon interlayer formation and distribution of intermetallics. During welding, aluminium gets lost at the temperature below the melting point of titanium. Therefore, it is needed to improve a new metal joining techniques between these two alloys. The present work is carried for welding TI6AL4V and AA2024 alloy by using Nd:YAG Pulsed laser welding unit. The performance of the butt welded interlayer structures are discussed in detail using hardness test and SEM. Test results reveal that interlayer fracture is caused near aluminium side due to low strength at the weld joint.

Analytical Evaluation of Residual Stresses in Dissimilar Metal Weld for Cast Stainless Steel Pipe and Low-Alloy Steel Component Nozzle (스테인리스주강 배관과 저합금강 기기노즐 이종금속용접부 잔류응력의 해석적 평가)

  • Park, June-Soo;Song, Min-Seop;Kim, Jong-Soo;Kim, In-Yong;Yang, Jun-Seog
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.100-100
    • /
    • 2009
  • This paper is concerned with numerical analyses of residual stresses in welds and material's susceptibility to stress corrosion cracking (SCC) for the primary piping system in nuclear power plants: Both the dissimilar metal weld (DMW) for stainless steel to low alloy steel joints and the similar metal weld (SMW) for forged stainless steel to cast stainless steel joints are considered. Thermal elasto-plastic analyses using the finite element method (FEM) are performed to predict residual stresses generated in fabrication welding and its related processes for both the DMW and SMW, including effects of quenching for cast stainless steel piping, machining of the DMW root, and grinding of the SMW root. As a result, the effect of quenching should be included in the evaluation of residual stresses in the SMW for the cast stainless steel piping. It is deemed that residual stresses in both the DMW and SMW would not affect the SCC susceptibility of the welds providing that the welding processes are completed without any weld repair on the inside wall of the joint. However, the grinding process if performed on the safe-end to piping weld, would produce a high level of residual stresses in the inner surface region and thus a stress improvement process (e.g. buffing) should be considered to reduce susceptibilities to SCC.

  • PDF

A Method of Residual Stress Improvement by Plastic Deformation in the Pipe Welding Zone (소성변형에 의한 배관 용접부의 잔류응력 개선 방법)

  • Choi, Sang-Hoon;Wang, Ji-Nam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.10
    • /
    • pp.568-572
    • /
    • 2013
  • The main components, such as a reactor vessel, in commercial nuclear power plants have been welded to pipes with dissimilar metal in which Primary Water Corrosion Cracking (PWSCC) has been occurred. PWSCC has become a worldwide issue recently. This paper addresses the results of experimental and numerical analysis to prevent PWSCC by changing the stress profile that is tensile stress to compressive stress at interesting regions with plastic deformation generated by mechanical pressure. Based on the results of experimental and numerical analysis with a 6 inch pipe and dissimilar metal welded pipes, compressive stress 68~206 Mpa is generated at all locations of inner surface in the heat affected zone.

Korean Round-Robin Tests Result for New International Program to Assess the Reliability of Emerging Nondestructive Techniques

  • Kim, Kyung Cho;Kim, Jin Gyum;Kang, Sung Sik;Jhung, Myung Jo
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.651-661
    • /
    • 2017
  • The Korea Institute of Nuclear Safety, as a representative organization of Korea, in February 2012 participated in an international Program to Assess the Reliability of Emerging Nondestructive Techniques initiated by the U.S. Nuclear Regulatory Commission. The goal of the Program to Assess the Reliability of Emerging Nondestructive Techniques is to investigate the performance of emerging and prospective novel nondestructive techniques to find flaws in nickel-alloy welds and base materials. In this article, Korean round-robin test results were evaluated with respect to the test blocks and various nondestructive examination techniques. The test blocks were prepared to simulate large-bore dissimilar metal welds, small-bore dissimilar metal welds, and bottom-mounted instrumentation penetration welds in nuclear power plants. Also, lessons learned from the Korean round-robin test were summarized and discussed.

스테인레스강 Overlay 용접부의 Disbonding에 관한 연구 1

  • 이영호;윤의박
    • Journal of Welding and Joining
    • /
    • v.1 no.2
    • /
    • pp.45-52
    • /
    • 1983
  • Many pressure vessels for the hot H$\sub$2//H$\sub$2/S service are made of 2+1/4Cr-1Mo steel with austenitic stainless steel overlay to combat agressive corrosion due to hydrogen sulfide. Hydrogen dissolves in to materials during operation, and sometimes gives rise to unfore-seeable damages. Appropriate precautions must, therefore, be taken to avoid the hydrogen induced damages in the design, fabrication and operation stage of such reactor vessels. Recently, hydrogeninduced cracking (or Disbonding) was found at the interface between base metal and stainless weld overlay of a desulfurizing reactor. Since the stainless steel overlay weld metal is subjected to thermal and internal-pressure loads in reactor operation, it is desirable for the overlay weld metal to have high strength and ductility from the stand point of structural safety. In section III of ASME Boiler and Pressure Vessel Code, Post-Weld Heat Treatment(PWHT) of more than one hour per inch at over 1100.deg. F(593.deg. C) is required for the weld joints of low alloy pressure vessel steels. This heat treatment to relieve stresses in the welded joint during construction of the pressure vessel is considered to cause sensitization of the overlay weld metal. The present study was carried out to make clear the diffusion of carbon migration by PWHT in dissimilar metal welded joint. The main conclusion reached from this study are as follows: 1) The theoretical analysis for diffusion of carbon in stainless steel overlay weld metal does not agree with Fick's 2nd law but the general law of molecular diffusion phenomenon by thermodynamic chemical potential. 2) In the stainless steel overlay welded joint, the PWHT at 720.deg. C for 10 hours causes a diffusion of carbon atoms from ferritic steel into austenitic steel according to the theoretical analysis for carbon migration and its experiment. 3) In case of PWHT at 720.deg. C for 10 hours, the micro-hardness of stainless steel weld metal in bonded zone increase very highly in the carburized layer with remarkable hardening than that of weld metal.

  • PDF

Mechanics Evaluations of Stress Corrosion Cracking for Dissimilar Welds in Nuclear Piping System (원자력 배관 이종금속 용접부 웅력부식균열의 역학적 평가)

  • Park, Jun-Su;Na, Bok-Gyun;Kim, In-Yong
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.38-40
    • /
    • 2005
  • Fracture mechanics evaluation of stress corrosion cracking (SCC) in the dissimilar metal weld (DMW) for the nuclear piping system is performed; simulating the transition joint of the ferritic nozzle to austenitic safe-end fabricated with the Inconel Alloy A82/182 buttering and welds. Residual stresses in the DMW are computed by the finite element (FE) analyses Then, to investigate the SCC in the weld root under the combined residual and system operation stresses, the fracture mechanics parameters for a semi-elliptical surface crack are evaluated using the finite element alternating method (FEAM). As a result, it is found that the effect of weld residual stresses on the crack-driving forces is dominant, as high as three times or more than the operation stresses.

  • PDF

The Mechanical Properties and the Nondestructive Evaluation of Dissimilar Friction Welded Steel Bars (이종마찰용접 강봉재의 기계적특성과 비파괴 평가)

  • Jung, W.T.;Kong, Y.S.;Kim, S.J.
    • Journal of Power System Engineering
    • /
    • v.10 no.1
    • /
    • pp.77-82
    • /
    • 2006
  • In this study, dissimilar friction welding were produced using 15mm diameter solid bar in chrome molybedenum steel(SCM440) to carbon steel(S45C) to investigate their mechanical properties and the relationship between the weld parameters and the nondestructive coefficients, such as AE counts and ultrasonic attenuation coefficient. The main friction welding parameters were selected to endure good quality welds on the basis of visual examination, tensile tests, Vickers hardness surveys of the bond of area and heat affected zone. The specimens were tested as-welded and post weld heat treated(PWHT). The tensile strength of the friction welded steel bars was increased up to 100% of the S45C base metal under the condition of all heating time. The ductility of PWHT specimens is higher than as-welded.

  • PDF