• 제목/요약/키워드: display driving

검색결과 755건 처리시간 0.032초

대전입자헝 디스플레이의 구동방식 (The Driving Method of a Charged Particle Type Display)

  • 권기영;김성운;황인성;김영조
    • 한국산학기술학회논문지
    • /
    • 제9권1호
    • /
    • pp.35-40
    • /
    • 2008
  • 본 논문에서 대전입자형 디스플레이 패널의 기본적인 구동방식 및 각각의 셀의 선택적 구동방식에 관하여 기술하였다. 패널을 제작하기 위해 $500{\mu}m{\times}500{\mu}m$의 셀면적을 가지고 있는 마스크패턴을 설계하였으며 기본적인 구동조건을 바탕으로 셀갭의 변화에 따른 구동전압의 변화를 관찰하였다. 수동메트릭스 방식으로 구동되는 패널의 각각의 셀을 선택적으로 구동하기 위해 선택된 셀과 선택되지 않은 셀의 전위차 상관관계를 확립하여 패널의 선택적인 구동을 수행하였으며 구동이 완료된 패널의 crosstalk현상을 관찰하였다. 또한 추가적인 전압을 인가하지 않아도 마지막 이미지가 오랜 시간 동안 유지되는 패널의 메모리 효과를 확인하였다.

Sub-field 재배열을 통해 Dynamic False Contour를 감소시키는 PDP 구동 방법 (PDP Driving Method for Reducing Dynamic False Contour by Sub-field Rearrangement)

  • 이승용;윤석정;최병덕;권오경
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.407-410
    • /
    • 2005
  • For reducing DFC(Dynamic False Contour), we propose a new PDP driving method by rearrangement of sub-fields. The proposed method constructs a frame using 16 sub-fields for expressing 256 gray levels. Although the number of sub-fields increases, the display time increases compared to the conventional 8 sub-fields driving method. This increase in display time is achieved by properly using both selective writing and selective erasing for each sub-field.

  • PDF

The TROPHY (Talented Role-playing Technology with a Dual Polarity Sustainer in Hybrid Mono Board) Driving Method

  • Park, Chang-Joon;Kwak, Jong-Woon;Kim, Tae-Hyung;Park, Hyun-Il;Moon, Seong-Hak
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.246-249
    • /
    • 2006
  • We have developed a new driving method named TROPHY(Talented Role-playing Technology with Dual Polarity sustainer in Hybrid Mono board). In this method, the sustain voltage is halved compared to the conventional method and the number of power sources is reduced by voltage level unification during the reset, address and sustain period. The hybrid mono board was especially developed to implement those technologies. Therefore, we can lower the cost with the TROPHY compared to the conventional one. It is suitable technology to improve the reliability of circuit and image sticking problem. We can also reduce the number of driving boards and the EMI problem comparing to those of the conventional method.

  • PDF

A Study on Phosphor Activation and Persistence for High Performance Driving 20' Carbon Nanotube Backlight Units

  • Huang, Chiao-Nan;Liang, Chao-Chiun;Chung, Shang-Ying;Lai, Ching-Ming;Lin, Biing-Nan;Jiang, Yau-Chen;Lee, Cheng-Chung;Pan, Ching-Tsai
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.479-482
    • /
    • 2007
  • For high performance driving carbon nanotube backlight units, their phosphor must be well studied. This paper experimentally evaluates their activating speed and persisting duration properties. They are proven to be the most efficiency related factors. High performance driving schemes are derived from them and implemented in this paper.

  • PDF

An Address Voltage Stabilization Circuit for the Single-Side Driving Method of AC Plasma Display Panels

  • Kim, Tae-Hyung;Kang, Jung-Won;Lee, Jun-Young
    • Journal of Power Electronics
    • /
    • 제9권6호
    • /
    • pp.884-891
    • /
    • 2009
  • An address voltage stabilization circuit for the single-side driving (SSD) method for AC plasma display panels (PDP) is proposed. The single-side driving method, which eliminates a common sustaining driver, uses only two electrodes in a three electrode AC PDP structure. The high-impedance (Hi-Z) mode operation of the data drive ICs during the sustaining period is needed for surface gas-discharge without misfiring in the SSD method but it produces the problem that the address voltage increases up to the breakdown voltage. The proposed circuit based on a flyback converter can stabilize the address voltage under the breakdown voltage and provide better surface gas-discharge performance without any misfiring in the SSD scheme.

New Fabrication Approach for Low Voltage Driving Electrophoretic Display

  • Park, Young-Mi;Kim, Do-Yun;Cho, Young-Tae;Lee, Yong-Eui;Kim, Chul-Hwan;Yoon, Sang-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.893-895
    • /
    • 2009
  • In this paper, we described the unique and novel method to prepare two kinds of electro-active particles, black and white particles with different polarity. The surface of the particles was characterized to be uniform and clean by adopting spray dryer as a tool for genesis of particles; neither surfactants nor high dielectric medium like water was employed during particle preparation step. The other purpose of this study is to investigate the factors that contribute high driving voltage of particlebased display like QR-LPD. We extracted parameters interaction between particle and electrode, and between oppositely charged particles. Here we reported an excellent behavior of particle-based display that showed low operating voltage, high contrast ratio as high as 8:1 without scarification of quick response time. By optimizing the particle size, charge per mass, selection of external additive sets, a lower driving voltage as low as 40V for the particles with $10{\mu}m$ volume average diameter was obtained.

  • PDF

운전 경력에 따른 차량 내 디스플레이 정보표시 요구사항 비교 (Comparative Analysis of Requirements for Information Presentation on In-vehicle Display Systems by Driving Career)

  • 구보람;주다영
    • 한국자동차공학회논문집
    • /
    • 제24권6호
    • /
    • pp.668-676
    • /
    • 2016
  • The accelerated convergence of automobiles and ICT has led to an increase in in-vehicle electronic devices designed to enhance the safety and convenience of drivers. Consequently, the information presentation on in-vehicle display systems for drivers and passengers need to be taken into account in order to guarantee driving stability while satisfying the needs of UX-based design users. This study compared and evaluated requirements for information items shown on in-vehicle displays regarding driving safety and convenience by groups according to driving career. A total of 38 information items related to safety and convenience that can be displayed while driving and pulling over were collected. Their level of necessity was tested and evaluated by 234 drivers. Using the results, we conducted a comparative analysis on the requirements for information presentation on in-vehicle display systems by groups according to driving career.

구동 TFT 편차 보상을 위한 전압 피드백 AMOLED 디스플레이 구동 회로 (Voltage Feedback AMOLED Display Driving Circuit for Driving TFT Deviation Compensation)

  • 손기성;조용수;손상희
    • 반도체디스플레이기술학회지
    • /
    • 제22권4호
    • /
    • pp.161-165
    • /
    • 2023
  • This paper designed a voltage feedback driving circuit to compensate for the characteristic deviation of the Active Matrix Organic Light Emitting Diode driving Thin Film Transistor. This paper describes a stable and fast circuit by applying charge sharing and polar stabilization methods. A 12-inch Organic Light Emitting Diode with a Double Wide Ultra eXtended Graphics Array resolution creates a screen distortion problem for line parasitism, and charge sharing and polar stabilization structures were applied to solve the problem. By applying Charge Sharing, all data lines are shorted at the same time and quickly positioned as the average voltage to advance the compensated change time of the gate voltage in the next operation period. A buffer circuit and a current pass circuit were added to lower the Amplifier resistance connected to the line as a polar stabilization method. The advantage of suppressing the Ringing of the driving Thin Film Transistor can be obtained by increasing the stability. As a result, a circuit was designed to supply a stable current to the Organic Light Emitting Diode even if the characteristic deviation of the driving Thin Film Transistor occurs.

  • PDF

Plasma AI(plasma adaptive intensifier)구동의 전력 소모 개선을 위한 구동방식 설계 (Design of Driving methods of lower power consumption in Plasma AI(plasma adaptive intensifier) driving method)

  • 김준형;오순택;이동호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.844-847
    • /
    • 2003
  • Display devices are becoming increasingly important as an interface between humans and machines in the growing information society. In display devices, PDP (Plasma Display Panel) has many advantages in that it has wide screen, wide viewing angle and is light weight, thin. In PDP driving method, if the brightness of input image is high, applying the fixed sustain pulse to the PDP panel will raise the PDP power consumption and may damages the PDP panel. To overcome these problems, the Plasma AI driving method was introduced by the Matshushita co. in Japan. The Plasma AI driving module calculates the peak value and average value of 1 frame image and adjusts the gradation and sustain pulses for 1 frame sustain. In this paper, the proposed PDP driving module is based on the Plasma AI driving module. The proposed driving module calculates peak value and average value, and the brightness distribution of 1 frame image. Using brightness distribution, the proposed driving module divides 1 frame input image into 15 image patterns. For each image pattern, minimum sustain pulses and sub-frames are used for the brightness of 1 frame image and the sustain weight for 64, 128, 192 gradation is proposed. Therefore, the sustain power consumption can be reduced.

  • PDF

후막 전계 발광 소자를 이용한 정보 표시형 Flexible Display (Flexible Information Display using Powder Electroluminescent Device)

  • 이종찬;박대희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.428-430
    • /
    • 2000
  • In this paper, the Flexible information display was implemented using AC powder electroluminescent device. ZnS:Cu and $BaTiO_3$ was used as a phosphor and dielectric respectively. The preparation of phosphor and dielectric layer was performed with screen printing. The implemented system of the Flexible information display was divided as following; EL display, driving circuit, software for driving. The properties of fabricated devices was measured with EL spectrum and brightness.

  • PDF