• Title/Summary/Keyword: display driving

Search Result 755, Processing Time 0.033 seconds

Studies on Analysis of Particle Lumping and Improvement of Driving Characteristics in Charged Particle Type Display (대전입자형 디스플레이에 있어서 입자뭉침의 분석 및 구동특성 개선에 관한 연구)

  • Kim, Young-Cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.11
    • /
    • pp.915-919
    • /
    • 2011
  • We analyzed various forces affective to the charged particles in closed space, to explain the image degradation and lifetime-shortening phenomena because of particle lumping which is one of the serious problems in reflective displays. It is possible to predict the quantity of q/m which is the most important parameter in determining the optical and electrical characteristics, by calculating the image force and kinetic energy. For stable driving, the quantity of q/m must be in the defined range but it changes during the fabrication process, so we added the filtering process to solve this problem and obtained the well-defined nonlinear driving voltage coinciding with the threshold voltage. And we obtained the fully-driving property which prevents the particle lumping and decides the image quality and lifetime of panel from the optical characteristics and occupation surface of moving particles.

Design of 5" True Color FED Driving System (5″ FED True Color 구동시스템 설계)

  • Shin, Hong-Jae;Choi, Chang-Woon;Kim, Jin;Choi, Jeong-Og;Kwon, Oh-Kyong
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.65-68
    • /
    • 2000
  • We design a new driving system of 5" true color FED using current controlled PWM method. Further more, we successfully developed a 5" FED panel, which resolution is 320$\times$240(Color). When we design a 5" FED driving circuit, FED tips are modeled as R-C for circuit simulator of FED driving circuit. In Video data processing, parallel R, G, B input signals is processed independently, so duty ratio increase and no noise, high quality performance is achieved in display of 5" FED. The luminance is about 100cd/$m^2$, the anode power consumption Is 2.1W and total power of the driving system is 21.54W

  • PDF

Novel Current Driving Circuit for Active Matrix Organic Light Emitting Diode

  • Yang, Yil-Suk;Roh, Tae-Moon;Lee, Dae-Woo;Kwon, Woo-H.;Kim, Jong-Dae
    • ETRI Journal
    • /
    • v.26 no.5
    • /
    • pp.509-511
    • /
    • 2004
  • This paper describes a novel current driving circuit for an active matrix organic light emitting diode (AMOLED). The proposed current driving circuit has a lower power consumption and higher chip density for the AMOLED display compared with the conventional one because all elements operate at a normal voltage and are shielded from the high voltage of the panel. The chip size and power consumption of the current driving circuit for an AMOLED can be improved by about 30 to 40% and 10 to 20%, respectively, compared with the conventional one.

  • PDF

A high efficiency green phosphorescent OLED with simple double emission layer structure

  • Kim, Sun-Young;Park, Tae-Jin;Jeon, Woo-Sik;Kim, Jong-Sil;Pode, Rachamdra;Jang, Jin;Kwon, Jang-Hyuk
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.30-33
    • /
    • 2008
  • Using a $Ir(ppy)_3$ doped in hole and electron transport host materials, simple three layers green PHOLEDs comprising double emissive layers have been fabricated. A low driving voltage value of 3.3 V to reach a luminance of $1000\;cd/m^2$ and maximum current- and power-efficiency values of 53.9 cd/A and 57.8 lm/W are demonstrated in this simple structure phosphorescent OLED.

  • PDF

A new WV Film for Fast-Response-time OCB-LCD-TVs

  • Ito, Yoji;Matsubara, Ryouta;Hisakado, Yoshiaki;Mori, Hiroyuki;Mihayashi, Keiji
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.991-994
    • /
    • 2005
  • We have successfully commercialized a novel optical compensation film, OCB-WV film, for OCB-LCD-TVs which has fast response time and wide viewing angle. The OCB-WV film consists of a 45degree-aligned discotic layer and a high Rth biaxial TAC film, which is suited for a roll-to-roll polarizer manufacturing process. This OCB-WV has brought out the excellent features that OCB intrinsically has, making nextgeneration fast-response LCD-TVs possible and free from image blurring in conjunction with an impulsive driving scheme.

  • PDF

Microplasma Current Switch for OLED applications

  • Cai, Jie-Yu;Kim, Myung-Min;Moon, Cheol-Hee;Lee, Sang-Youn;Yi, Seung-Jun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.854-857
    • /
    • 2009
  • The concept of a microplasma current switch for a device operated in a current mode like organic light-emitting diodes, which features matrix addressability and current switching, is presented as well as its architecture and operational principle. To verify the concept, we have fabricated a 100 mm ${\times}$ 100 mm microplasma current switch panel with a cell pitch of $1080{\mu}m{\times}1080{\mu}m$. Moreover, the current-voltage measurements of the unit cell are performed for three different driving voltage amplitudes. They show the characteristic of an asymmetric floating double probe diagnosing plasmas.

  • PDF

Transparent Plasma Display using Transparent Glass Barrier Ribs

  • Lee, Sung-Min;Kim, Seung-Hun;Oh, Seung-Hwa;Shin, Bhum-Jae;Choi, Kyung-Cheol
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.339-341
    • /
    • 2009
  • A transparent plasma display was developed using transparent glass barrier ribs. Glass barrier ribs were fabricated via a wet etching process. Glass barrier ribs created using a top and bottom etching process showed better transparency compared to those created through only a top etching process. A see-through phosphor layer was obtained by coating the sidewall of the barrier ribs with a conventional opaque phosphor. A fabricated prototype of a transparent plasma display was clear enough to see the background beyond the panel and was well operated by a conventional driving scheme. The maximum luminance was 1150 cd/$m^2$ and the maximum luminous efficacy was 1.35 lm/W in a Ne+13.5%Xe gas-mixture and green cells.

  • PDF

Inorganic Salt Doped Soluble Polyimide Type Alignment Layer for Improving Panel Reliability and DC Image Sticking Properties

  • Lee, Tae-Rim;Roh, Seung-Kwang;Lim, Young-Nam;Kim, Kyeong-Jin;Shin, Hyun-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.672-676
    • /
    • 2009
  • Polymide is widely used alignment material of recent commercial LCD panel structure. Generally, polyimide alignment material is classified soluble polyimide type and polyamic acid type with their main bond structure of solution state. specially, compared to polyamic acid alignment layer, soluble polyimide type alignment layer have excellent reliability during long term LCD driving cause of their high imidazation ratio(%), high voltage holding ratio(%) and low ion density. The other side, this type alignment materials has significant DC image stickicng side effect for using in-plane switching mode lcd structure cause of their slow DC discharging property. we applied inorganic salt to usual soluble polyimide type alignment layer and found out this technique had good DC image sticking property without any loss of reliability property in inplane switching LCD cell structure. This approach leads excellent DC image sticking property with maintaining high reliability property this approach confirmed improves an image sticking and a reliability simultaneously from the horizontality aligned LCD mode whose relatively bad image sticking property.

  • PDF

A Study of Fuel Reduction Driving Pattern on Diesel Locomotives (연료절감운전 패턴 연구)

  • Son, Kyoung-So;Kim, Dae-Sik;Kim, Ho-Soon;Kim, Teak-Sung;Park, Tae-Gi
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1405-1411
    • /
    • 2011
  • It is very often for the experienced diesel locomotive drivers to identify the proper replacing time for the fuel adjustment tube only based on their experience. Because of that, sometimes the locomotive's fuel is burned out due to the unnecessary torque. Or sometimes, the locomotive does not operate with its accelerating performance because the fuel is not supplied at the appropriate moment. Meanwhile, recent typical auto vehicles provide drivers with the average fuel efficiency and the instant fuel efficiency in real-time. By providing the real time display mentioned above, it is one of the good examples that those drivers, who had driven their cars not properly and used a lot of fuel with their bad driving habits, obtain the efficient driving pattern by continuous educating effect. Similarly, if the diesel locomotive provides the train driver with the optimal driving pattern within a certain driving section, it will be effective for fuel saving. It is possible to make the most effective driving pattern by performing the repeated trial running especially for the railway because the track's operating routes, its grades, and etc are relatively precise. This research analyzes the result data which was obtained by many times trial running on the identical section after equipping the fuel use measuring device to a certain test vehicle, and confirms the fuel saving effect depending on the driving pattern along the test section. At the same time, the research to establish the optimal driving pattern was progressed.

  • PDF

Multi-Line Driving Technology on PM OLED using Graph theory and Correlation (그래프 이론과 상관성을 이용한 PM OLED 다중선 구동 기술)

  • Lee, Gil-Jae;Lee, Chang-Hoon;Jeong, Je-Chang
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.62-72
    • /
    • 2010
  • PM OLED is used in many applications as one of the display for the next generation. The most essential problems are the power dissipation and the short life time in applying PM OLED into a commercial application. Many efforts are made in developing the panel and in improving the circuit for expanding the current market wider. The life time in PM OLED is expanded by lessening the power dissipation of the circuit for the magnitude of the driving current is lowered. It is possible to minimize the power dissipation from improving the driving technology. The classical technology, Row-to-Row driving, is that row is selected one by one while applying the column current input individually. The multi-line driving is a new technology which is to select multiple rows simultaneously while applying the column current as a whole. However, the solution of the multi-line driving is NP-complete problem. The efficiency is dependant on the sort of picture and the driving condition. This paper presents the new efficient multi-line driving which is that the multiple lines are selected by applying column current together after grouping the simultaneous driving group applying the gnew efficient muthe coi-line dr coefficient. Bengrouping the several rows which has the higher coi-line dr coefficient, the more efficient driving is realized to present the high quality image and to lessen the power dissipation and to stretch the life time in the PM OLED.