• Title/Summary/Keyword: displacement tracking

Search Result 160, Processing Time 0.024 seconds

Analysis of Surface Displacement Due to the 2024 Noto Peninsula Earthquake in Japan: Focus on Horizontal Surface Displacement Using Offset Tracking (2024년 일본 노토반도 지진으로 인한 지표 변위 분석: Offset Tracking을 이용한 수평 방향 지표 변위를 중심으로)

  • Bong Chan Kim;Seulki Lee;Chang-Wook Lee
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.3
    • /
    • pp.307-316
    • /
    • 2024
  • On January 1, 2024, an earthquake with a moment magnitude of 7.5 occurred on the Noto Peninsula in Japan. The earthquake caused significant surface displacement on the Noto Peninsula. The surface displacement is measured by global navigation satellite system (GNSS) base stations, but there are limitations in obtaining information in areas where base stations do not exist. Therefore, in this study, we aim to determine the horizontal land surface displacement across the Noto Peninsula using offset tracking, which can detect rapidly occurring displacement. As a result of analyzing the Noto Peninsula using the offset tracking technique, it was found that more horizontal surface displacement occurred in the northwest region than in the northeast region of the Noto Peninsula, where the epicenter was located, and the surface displacement value reached a maximum of 2.9 m. The results of this study can be used to calculate surface displacement values in areas where surface displacement data are not available through ground GNSS base stations.

Image-based structural dynamic displacement measurement using different multi-object tracking algorithms

  • Ye, X.W.;Dong, C.Z.;Liu, T.
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.935-956
    • /
    • 2016
  • With the help of advanced image acquisition and processing technology, the vision-based measurement methods have been broadly applied to implement the structural monitoring and condition identification of civil engineering structures. Many noncontact approaches enabled by different digital image processing algorithms are developed to overcome the problems in conventional structural dynamic displacement measurement. This paper presents three kinds of image processing algorithms for structural dynamic displacement measurement, i.e., the grayscale pattern matching (GPM) algorithm, the color pattern matching (CPM) algorithm, and the mean shift tracking (MST) algorithm. A vision-based system programmed with the three image processing algorithms is developed for multi-point structural dynamic displacement measurement. The dynamic displacement time histories of multiple vision points are simultaneously measured by the vision-based system and the magnetostrictive displacement sensor (MDS) during the laboratory shaking table tests of a three-story steel frame model. The comparative analysis results indicate that the developed vision-based system exhibits excellent performance in structural dynamic displacement measurement by use of the three different image processing algorithms. The field application experiments are also carried out on an arch bridge for the measurement of displacement influence lines during the loading tests to validate the effectiveness of the vision-based system.

Multiple Face Segmentation and Tracking Based on Robust Hausdorff Distance Matching

  • Park, Chang-Woo;Kim, Young-Ouk;Sung, Ha-Gyeong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.632-635
    • /
    • 2003
  • This paper describes a system fur tracking multiple faces in an input video sequence using facial convex hull based facial segmentation and robust hausdorff distance. The algorithm adapts skin color reference map in YCbCr color space and hair color reference map in RGB color space for classifying face region. Then, we obtain an initial face model with preprocessing and convex hull. For tracking, this algorithm computes displacement of the point set between frames using a robust hausdorff distance and the best possible displacement is selected. Finally, the initial face model is updated using the displacement. We provide an example to illustrate the proposed tracking algorithm, which efficiently tracks rotating and zooming faces as well as existing multiple faces in video sequences obtained from CCD camera.

  • PDF

Multiple Face Segmentation and Tracking Based on Robust Hausdorff Distance Matching

  • Park, Chang-Woo;Kim, Young-Ouk;Sung, Ha-Gyeong;Park, Mignon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.87-92
    • /
    • 2003
  • This paper describes a system for tracking multiple faces in an input video sequence using facial convex hull based facial segmentation and robust hausdorff distance. The algorithm adapts skin color reference map in YCbCr color space and hair color reference map in RGB color space for classifying face region. Then, we obtain an initial face model with preprocessing and convex hull. For tracking, this algorithm computes displacement of the point set between frames using a robust hausdorff distance and the best possible displacement is selected. Finally, the initial face model is updated using the displacement. We provide an example to illustrate the proposed tracking algorithm, which efficiently tracks rotating and zooming faces as well as existing multiple faces in video sequences obtained from CCD camera.

A Stuy on Automatic Seam Tracking of Arc Welding Using an Laser Displacement Sensor (레이저 변위센서를 이용한 용접선 자동추적에 관한 연구)

  • 양상민;조택동;서송호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.680-684
    • /
    • 1996
  • Welding systems cannot adapt to changes in the joint geometry which may occur due to a variety of reason. Automatic seam tracking technigue is essential to adjust the welding torch position in real time as it moves along the seam. Automatic tracking system must keep the welding speed constant unrelation to the change of the welding path. Therefore, the information from the laser displacement sensor must be converted into the input to operate the X-Y table and to rotate the desired torch position by proposed algorithm. In this research, laser displacement sensor is used as a seam finder in the automatic tracking system. X-Y moving table manipulated by ac servo motor controls the position and velocity of the torch-and-sensor part. DC motor controls the position and velocity of the torch. X-Y table controls the position of sensor and relative position of torch is controlled by dc motor which is mounted at sensor-and-torch part. Sensor is always ahead of torch to preview the weld line. From the experimental results, we could see the possiblity that the laser displacement sensor can be used as a seam finder in welding process and that the seam tracking system controlled by proposed algorithm is well done.

  • PDF

A Tracking Filter with Motion Compensation in Local Navigation Frame for Ship-borne 2D Surveillance Radar (2 차원 탐색 레이다를 위한 국부 항법 좌표계에서의 운동보상을 포함한 추적필터)

  • Kim, Byung-Doo;Lee, Ja-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.507-512
    • /
    • 2007
  • This paper presents a tracking filter with ship's motion compensation for a ship-borne radar tracking system. The ship's maneuver is described by displacement and rotational motions in the ship-centered east-north frame. The first order Taylor series approximation of the measurement error covariance of the converted measurement is derived in the ship-centered east-north frame. The ship's maneuver is compensated by incorporating the measurement error covariance of the converted measurement and displacement of the position state in the tracking filter. The simulation results via 500 Monte-Carlo runs show that the proposed method follows the target successfully and provides consistent tracking performance during ship's maneuvers while the conventional tracking filter without ship motion compensation fails to track during such periods.

A Study on a Dual Electromagnetic Sensor System for Weld Seam Tracking of I-Butt Joints

  • Kim, J.-W.;Shin, J.-H.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.51-56
    • /
    • 2002
  • The weld seam tracking system for arc welding process uses various kinds of sensors such as arc sensor, vision sensor, laser displacement sensor and so on. Among the variety of sensors available, electro-magnetic sensor is one of the most useful methods especially in sheet metal butt-joint arc welding, primarily because it is hardly affected by the intense arc light and fume generated during the welding process, and also by the surface condition of weldments. In this study, a dual-electromagnetic sensor, which utilizes the induced current variation in the sensing coil due to the eddy current variation of the metal near the sensor, was developed for arc welding of sheet metal I-butt joints. The dual-electromagnetic sensor thus detects the offset displacement of weld line from the center of sensor head even though there's no clearance in the joint. A set of design variables of the sensor was determined far the maximum sensing capability through the repeated experiments. Seam tracking is performed by correcting the position of sensor to the amount of offset displacement every sampling period. From the experimental results, the developed sensor showed the excellent capability of weld seam detection when the sensor to workpiece distance is near less than 5 ㎜, and it was revealed that the system has excellent seam tracking ability for the I-butt joint of sheet metal.

  • PDF

Displacement tracking of pre-deformed smart structures

  • Irschik, Hans;Krommer, Michael;Zehetner, Christian
    • Smart Structures and Systems
    • /
    • v.18 no.1
    • /
    • pp.139-154
    • /
    • 2016
  • This paper is concerned with the dynamics of hyperelastic solids and structures. We seek for a smart control actuation that produces a desired (prescribed) displacement field in the presence of transient imposed forces. In the literature, this problem is denoted as displacement tracking, or also as shape morphing problem. One talks about shape control, when the displacements to be tracked do vanish. In the present paper, it is assumed that the control actuation is provided by imposed eigenstrains, e.g., by the electric field in piezoelectric actuators, or by thermal actuators, or via analogous physical effects, such as magneto-striction or pre-stress. Structures with a controlled eigenstrain-type actuation belong to the class of smart structures. The action of the eigenstrains can be conveniently characterized by actuation stresses. Our theoretical derivations are performed in the framework of the theory of small incremental dynamic deformations superimposed upon a statically pre-deformed configuration of a hyperelastic solid or structure. We particularly ask for a distribution of incremental actuation stresses, such that the incremental displacements follow exactly a prescribed trajectory field, despite the imposed incremental forces are present. An exact solution of this problem is presented under the assumption that the actuation stresses can be tailored freely and applied everywhere within the body. Extending a Neumann-type solution strategy, it is shown that the actuation stresses due to the distributed control eigenstrains must satisfy certain quasi-static equilibrium conditions, where auxiliary body-forces and auxiliary surface tractions are to be taken into account. The latter auxiliary loading can be directly computed from the imposed forces and from the desired displacement field to be tracked. Hence, despite the problem is a dynamic one, a straightforward computation of proper actuator distributions can be obtained in the framework of quasi-static equilibrium conditions. Necessary conditions for the functioning of this concept are presented. Particularly, it must be required that the intermediate configuration is infinitesimally superstable. Previous results of our group for the case of shape control and displacement tracking in linear elastic structures are included as special cases. The high potential of the solution is demonstrated via Finite Element computations for an irregularly shaped four-corner plate in a state of plain strain.

A New Face Tracking Algorithm Using Convex-hull and Hausdorff Distance (Convex hull과 Robust Hausdorff Distance를 이용한 실시간 얼굴 트래킹)

  • Park, Min-Sik;Park, Chang-U;Park, Min-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.438-441
    • /
    • 2001
  • This paper describes a system for tracking a face in a input video sequence using facial convex hull based facial segmentation and a robust hausdorff distance. The algorithm adapts YCbCr color model for classifying face region by [l]. Then, we obtain an initial face model with preprocessing and convex hull. For tracking, a Robust Hausdorff distance is computed and the best possible displacement is selected. Finally, the previous face model is updated using the displacement t. It is robust to some noises and outliers. We provide an example to illustrate the proposed tracking algorithm in video sequences obtained from CCD camera.

  • PDF

Motion Control of Injection Moulding Cylinder with Electric-Hydrostatic Drives (전기-정유압 구동식 사출성형 실린더의 운동제어)

  • Cho, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.5 no.4
    • /
    • pp.26-31
    • /
    • 2008
  • This paper deals with the issue of position tracking control of a clamp-cylinder for injection moulding machine with electric-hydrostatic drives. A fixed displacement pump is utilized in combination with AC motor in order to directly control a clamp-cylinder. A clamp-cylinder may be required to operate under a variety of operating conditions. Therefore, robust control performance is important in position tracking control applications. In order to accommodate mismatches between the real plant and the model used for controller design, discrete-time sliding mode control is developed by combining a velocity feedforward loop. From tracking control experiments, it is shown that significant reduction in position tracking error is achieved through the use of sliding mode control.

  • PDF