• 제목/요약/키워드: displacement ratio

검색결과 1,497건 처리시간 0.02초

완만한 이력거동 시스템에 대한 비탄성 변위비의 평가 (Evaluation of Inelastic Displacement Ratios for Smooth Hysteretic Behavior Systems)

  • 송종걸
    • 한국지진공학회논문집
    • /
    • 제15권3호
    • /
    • pp.11-26
    • /
    • 2011
  • 비탄성 변위비는 최대 선형 탄성변위에 대한 최대 비탄성 변위의 비로서 정의된다. 비탄성 변위비는 비탄성 응답의 계산을 하지 않고도 최대 탄성변위로부터 최대 비탄성변위를 직접적으로 평가 가능하게 한다. 비탄성 변위비에 대한 기존의 연구는 이선형 또는 강성저하시스템과 같은 분할선형시스템에 국한되었다. 본 논문에서는 근거리 및 원거리 지진을 받는 완만한 곡선형 이력거동 시스템의 비탄성 변위비에 대하여 연구하였다. 두 단계의 회귀분석 과정을 통하여 비탄성 변위비에 대한 간편식을 제안하였다.

이선형 단자유도 감쇠시스템의 비탄성변위비 (Inelastic Displacement Ratio for SDOF Bilinear and Damping Systems)

  • 한상환;배문수;조종
    • 한국지진공학회논문집
    • /
    • 제11권6호
    • /
    • pp.53-61
    • /
    • 2007
  • NEHRP 지반조건 B,C,D에서 이선형 단자유도 감쇠시스템의 지반조건, 후탄성기울기, 감쇠비, 항복강도 감소계수, 고유 주기 등의 변화가 비탄성변위비에 미치는 영향을 조사하였다. 기존의 제안식은 변위일정 법칙을 따라 일정주기 이상에서 비탄성 변위비를 과대평가하게 된다. 또한 기존식은 5%이상의 감쇠비에 대하여만 제안되었다. 본 연구는 후탄성기울기, 감쇠비 20% 이하의 이선형 시스템의 비탄성 변위비의 평균과 편차를 제안하였고 범용적으로 사용할 수 있음을 보였다. 제안식을 사용하여 비탄성 변위비의 확률적 분포를 계산하여 구조물의 성능기반설계에 이용할 수 있다.

전류변성기 비교기의 비오차 및 위상오차 평가기술 (Evaluation Technique for Ratio Error and Phase Displacement of Current Transformer Comparator)

  • 김윤형;한상길;정재갑;한상옥
    • 전기학회논문지P
    • /
    • 제57권4호
    • /
    • pp.437-443
    • /
    • 2008
  • We have developed an evaluation technique for both ratio error and phase displacement of current transformer (CT) comparator by using the precise standard capacitors and resistors. By applying this technique to equivalent circuit of CT comparator evaluation system, we can obtain the calculated and measured ratio errors (or phase displacements) in the CT comparator. Thus we can evaluate ratio errors and phase displacement of CT comparator by comparing the calculated and measured ratio errors (or phase displacements). The method was applied to CT comparator under test with the ratio errors and phase displacement ranges of $0{\sim}{\pm}10%$ and $0{\sim}{\pm}7.5$ crad, respectively. Finally we have compared the ratio error and phase displacement of the CT comparator obtained in this method with specifications of two companies.

Probability-based prediction of residual displacement for SDOF using nonlinear static analysis

  • Feng, Zhibin;Gong, Jinxin
    • Earthquakes and Structures
    • /
    • 제22권6호
    • /
    • pp.571-584
    • /
    • 2022
  • The residual displacement ratio (RDRs) response spectra have been generally used as an important means to evaluate the post-earthquake repairability, and the ratios of residual to maximum inelastic displacement are considered to be more appropriate for development of the spectra. This methodology, however, assumes that the expected residual displacement can be computed as the product of the RDRs and maximum inelastic displacement, without considering the correlation between these two variables, which inevitably introduces potential systematic error. For providing an adequately accurate estimate of residual displacement, while accounting for the collapse resistance performance prior to the repairability evaluation, a probability-based procedure to estimate the residual displacement demands using the nonlinear static analysis (NSA) is developed for single-degree-of-freedom (SDOF) systems. To this end, the energy-based equivalent damping ratio used for NSA is revised to obtain the maximum displacement coincident with the nonlinear time history analysis (NTHA) results in the mean sense. Then, the possible systematic error resulted from RDRs spectra methodology is examined based on the NTHA results of SDOF systems. Finally, the statistical relation between the residual displacement and the NSA-based maximum displacement is established. The results indicate that the energy-based equivalent damping ratio will underestimate the damping for short period ranges, and overestimate the damping for longer period ranges. The RDRs spectra methodology generally leads to the results being non-conservative, depending on post-yield stiffness. The proposed approach emphasizes that the repairability evaluation should be based on the premise of no collapse, which matches with the current performance-based seismic assessment procedure.

쇄석다짐말뚝 복합지반의 응력분담에 관한 현장실험 연구 (Field Test Study on Stress Concentration Ratio of Composited soft ground with Crushed-stone Compaction Pile)

  • 김태훈;이민희;최용규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.717-724
    • /
    • 2003
  • Although sand compaction pile is applied considerably for increase of hearing capacity in domestic, it is getting more necessary to develope the alternative materials because of exhaustion and increase of unit cost of sand. In this study, stress concentration ratio between crushed-stone pile and soft ground was measured and, a displacement ratio 30, 40 and 50%, variation of stress concentration ratio was analyzed. As an increase displacement ratio, the stress concentration effect of crushed-stone compaction pile doesn't increase proportionally and effect of ground improvement in case of ground was good at displacement ratio 30% or 40%. The stress concentration ratio of crushed-stone compaction pile in group piles is 1.5 times that of crushed-stone compaction pile in single pile.

  • PDF

지진의 특성주기를 고려한 완만한 곡선형 이력거동시스템의 비탄성 변위비 (Inelastic Displacement Ratios for Smooth Hysteretic System Considering Characteristic Period of Earthquakes)

  • 송종걸
    • 한국지진공학회논문집
    • /
    • 제17권1호
    • /
    • pp.1-10
    • /
    • 2013
  • In order to predict inelastic displacement response without nonlinear dynamic analysis, the equal displacement rule can be used for the structures with longer natural periods than the characteristic period, $T_g$, of earthquake record. In the period range longer than $T_g$, peak displacement responses of elastic systems are equal or larger than those of inelastic systems. In the period range shorter than $T_g$, opposite trend occurs. In the equal displacement rule, it is assumed that peak displacement of inelastic system with longer natural period than $T_g$ equals to that of elastic system with same natural period. The equal displacement rule is very useful for seismic design purpose of structures with longer natural period than $T_g$. In the period range shorter than $T_g$, the peak displacement of inelastic system can be simply evaluated from the peak displacement of elastic system by using the inelastic displacement ratio, which is defined as the ratio of the peak inelastic displacement to the peak elastic displacement. Smooth hysteretic behavior is more similar to actual response of real structural system than a piece-wise linear hysteretic behavior such as bilinear or stiffness degrading behaviors. In this paper, the inelastic displacement ratios of the smooth hysteretic behavior system are evaluated for far-fault and near-fault earthquakes. The simple formula of inelastic displacement ratio considering the effect of $T_g$ is proposed.

유로코드 2 재료모형을 사용한 철근콘크리트 부재의 연성도 평가 (Evaluation of Ductility in Reinforced Concrete Members Using Material Models in Eurocode2)

  • 최승원
    • 대한토목학회논문집
    • /
    • 제35권2호
    • /
    • pp.287-297
    • /
    • 2015
  • 철근콘크리트 부재의 연성을 확보하기 위하여 콘크리트구조기준에서는 철근의 최소 허용 변형률에 대한 지침을 두고 있고, EC2에서는 중립축 깊이와 유효 깊이의 비(c/d)를 제한하고 있다. 일반적으로 철근콘크리트 부재의 연성 능력은 항복변위와 극한변위의 비로서 표현되는 변위 연성도를 통해 평가하는데, 변위 연성도를 정확하게 산정하기 위해서는 항복변위와 극한변위에 대한 정립이 필수적이다. 그러나 실제 부재의 변위는 부재의 다양한 특성에 영향을 받으므로 이들 값을 정확하게 산정하는 것은 어렵다. 이 연구에서는 철근콘크리트 부재의 항복변위 및 극한변위를 휨모멘트-휨곡률 관계를 통해 직접 계산하여 변위 연성도를 산정하였다. 해석의 주요 변수는 콘크리트 압축강도, 주철근 항복강도, 주철근 비, 횡철근 간격, 축력비 및 콘크리트 극한변형률이다. 해석 결과 콘크리트 압축강도가 증가할수록 변위 연성도는 증가하였다. 반면에 주철근의 항복강도, 주철근 비, 횡철근 간격 및 축력비가 증가할수록 변위 연성도는 감소하였다. 그리고 변위 연성도는 기둥의 내진설계에 사용되는 응답수 정계수(R)의 산정에 필수적이므로 변위 연성도를 정확하게 산정하는 것이 필수적이라고 판단된다.

Residual displacement estimation of simple structures considering soil structure interaction

  • Aydemir, Muberra Eser;Aydemir, Cem
    • Earthquakes and Structures
    • /
    • 제16권1호
    • /
    • pp.69-82
    • /
    • 2019
  • As the residual displacement and/or drift demands are commonly used for seismic assessment of buildings, the estimation of these values play a very critical role through earthquake design philosophy. The residual displacement estimation of fixed base structures has been the topic of numerous researches up to now, but the effect of soil flexibility is almost always omitted. In this study, residual displacement demands are investigated for SDOF systems with period range of 0.1-3.0 s for near-field and far-field ground motions for both fixed and interacting cases. The elastoplastic model is used to represent non-degrading structures. Based on time history analyses, a new simple yet effective equation is proposed for residual displacement demand of any system whether fixed base or interacting as a function of structural period, lateral strength ratio and spectral displacement.

보이스 코일 액츄에이터의 PWM 제어에서 듀티비-변위 모델 연구 (Duty Ratio-Displacement Model in PWM Control of Voice Coil Actuator)

  • 황진동;곽용길;김주현;김선호;안중환
    • 한국기계가공학회지
    • /
    • 제6권2호
    • /
    • pp.59-66
    • /
    • 2007
  • Voice coil actuator is used linear motion system that requires precision positioning control. In order to control precision positioning of voice coil actuator, relation model between duty ratio and moving displacement of voice coil actuator is needed. This paper present a duty ratio - displacement model in PWM control of voice coil actuator. Transfer function of voice coil actuator is obtained by combining voice coil motor's equation of motion with the equation of circuit and characteristic of voice coil motor. Consider to initial condition of velocity and current, transfer function is transformed mathematical model. The induced model can predict output displacement, velocity and current according to duty ratio and amplitude. The model is verified by experimental tests such as velocity and displacement response of voice coil motor. Simulated results have tracking errors of less than 10 percent of experimental results.

  • PDF

Evaluating seismic demands for segmental columns with low energy dissipation capacity

  • Nikbakht, Ehsan;Rashid, Khalim;Mohseni, Iman;Hejazi, Farzad
    • Earthquakes and Structures
    • /
    • 제8권6호
    • /
    • pp.1277-1297
    • /
    • 2015
  • Post-tensioned precast segmental bridge columns have shown high level of strength and ductility, and low residual displacement, which makes them suffer minor damage after earthquake loading; however, there is still lack of confidence on their lateral response against severe seismic loading due in part to their low energy dissipation capacity. This study investigates the influence of major design factors such as post-tensioning force level, strands position, columns aspect ratio, steel jacket and mild steel ratio on seismic performance of self-centring segmental bridge columns in terms of lateral strength, residual displacement and lateral peak displacement. Seismic analyses show that increasing the continuous mild steel ratio improves the lateral peak displacement of the self-centring columns at different levels of post-tensioning (PT) forces. Such an increase in steel ratio reduces the residual drift in segmental columns with higher aspect ratio more considerably. Suggestions are proposed for the design of self-centring segmental columns with various aspect ratios at different target drifts.