• 제목/요약/키워드: displacement of membrane

검색결과 153건 처리시간 0.027초

변위센서응용을 위한 피라미드형 실리콘 턴널링소자의 제조 (Fabrication of the pyramid-type silicon tunneling devices for displacement sensor applications)

  • 마대영;박기철;김정규
    • 센서학회지
    • /
    • 제9권3호
    • /
    • pp.177-181
    • /
    • 2000
  • 턴널링 전류는 전극사이의 거리에 지수적으로 비례한다. 따라서 턴널링 전류의 변화측정을 통하여 전극간격의 미세변위를 측정할 수 있다. 본 실험에서는 micro-tip과 membrane사이에 턴널링 전류가 흐르는 피라미드형 실리콘 턴널링소자를 micro-electro-mechanical systems (MEMS) 공정을 이용하여 제조하였다. 단결정 실리콘을 KOH 용액안에서 이방성 에칭 시켜 micro-tip을 제조하였으며, 이때 $SiO_2$막을 마스크로 사용하였다 $Si_3N_4$막으로 membrane을 형성하였다. 마스크 방향에 따른 에칭 진행과정의 차이를 조사하였으며 membrane으로 사용한 $Si_3N_4$막의 stiffness를 측정하였다. 실험으로 측정하기 어려운 영역의 $Si_3N_4$막 stiffness 예측을 위한 모델식을 제시하였다.

  • PDF

Computational optimisation of a concrete model to simulate membrane action in RC slabs

  • Hossain, Khandaker M.A.;Olufemi, Olubayo O.
    • Computers and Concrete
    • /
    • 제1권3호
    • /
    • pp.325-354
    • /
    • 2004
  • Slabs in buildings and bridge decks, which are restrained against lateral displacements at the edges, have ultimate strengths far in excess of those predicted by analytical methods based on yield line theory. The increase in strength has been attributed to membrane action, which is due to the in-plane forces developed at the supports. The benefits of compressive membrane action are usually not taken into account in currently available design methods developed based on plastic flow theories assuming concrete to be a rigid-plastic material. By extending the existing knowledge of compressive membrane action, it is possible to design slabs in building and bridge structures economically with less than normal reinforcement. Recent research on building and bridge structures reflects the importance of membrane action in design. This paper describes the finite element modelling of membrane action in reinforced concrete slabs through optimisation of a simple concrete model. Through a series of parametric studies using the simple concrete model in the finite element simulation of eight fully clamped concrete slabs with significant membrane action, a set of fixed numerical model parameter values is identified and computational conditions established, which would guarantee reliable strength prediction of arbitrary slabs. The reliability of the identified values to simulate membrane action (for prediction purposes) is further verified by the direct simulation of 42 other slabs, which gave an average value of 0.9698 for the ratio of experimental to predicted strengths and a standard deviation of 0.117. A 'deflection factor' is also established for the slabs, relating the predicted peak deflection to experimental values, which, (for the same level of fixity at the supports), can be used for accurate displacement determination. The proposed optimised concrete model and finite element procedure can be used as a tool to simulate membrane action in slabs in building and bridge structures having variable support and loading conditions including fire. Other practical applications of the developed finite element procedure and design process are also discussed.

A co-rotational 8-node assumed strain element for large displacement elasto-plastic analysis of plates and shells

  • Kim, K.D.
    • Structural Engineering and Mechanics
    • /
    • 제15권2호
    • /
    • pp.199-223
    • /
    • 2003
  • The formulation of a non-linear shear deformable shell element is presented for the solution of stability problems of stiffened plates and shells. The formulation of the geometrical stiffness presented here is exactly defined on the midsurface and is efficient for analyzing stability problems of thick plates and shells by incorporating bending moment and transverse shear resultant force. As a result of the explicit integration of the tangent stiffness matrix, this formulation is computationally very efficient in incremental nonlinear analysis. The element is free of both membrane and shear locking behaviour by using the assumed strain method such that the element performs very well in the thin shells. By using six degrees of freedom per node, the present element can model stiffened plate and shell structures. The formulation includes large displacement effects and elasto-plastic material behaviour. The material is assumed to be isotropic and elasto-plastic obeying Von Mises's yield condition and its associated flow rules. The results showed good agreement with references and computational efficiency.

Static assessment of quadratic hybrid plane stress element using non-conforming displacement modes and modified shape functions

  • Chun, Kyoung-Sik;Kassegne, Samuel Kinde;Park, Won-Tae
    • Structural Engineering and Mechanics
    • /
    • 제29권6호
    • /
    • pp.643-658
    • /
    • 2008
  • In this paper, we present a quadratic element model based on non-conforming displacement modes and modified shape functions. This new and refined 8-node hybrid stress plane element consists of two additional non-conforming modes that are added to the translational degree of freedom to improve the behavior of a membrane component. Further, the modification of the shape functions through quadratic polynomials in x-y coordinates enables retaining reasonable accuracy even when the element becomes considerably distorted. To establish its accuracy and efficiency, the element is compared with existing elements and - over a wide range of mesh distortions - it is demonstrated to be exceptionally accurate in predicting displacements and stresses.

인지질막의 유전완화 특성 (Dielectric Relaxation Characteristics of Phospholipid Membrane)

  • 이경섭;조수영;박석순;정헌상;최영일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.173-176
    • /
    • 1998
  • We experimentally investigated the dielectric relaxation phenomena of a liquid crystal monolayers by the Displacement current techique and displacement current flowing across monolayers is analyzed using rod-like molecular model. It is revealed that the dielectric reaxation time $\tau$ of monolaters in the isotropic polar orientational phase is determined using a linear relashionship between the monolayers compression speed $\alpha$ and the molecular area. The dielectric relaxation time of phospholipid monolayers was examined on the basis of the analysis developed here.

  • PDF

변형률에 근거한 2-절점 곡선보 요소 (A 2-Node Strain Based Curved Beam Element)

  • 유하상;신효철
    • 대한기계학회논문집A
    • /
    • 제20권8호
    • /
    • pp.2540-2545
    • /
    • 1996
  • It is well known that in typical displacement-based curved beam elements, the stiffness matrix is overestimated and as a result displacement predictions show gross error for the thin beam case. In this paper, a stain based curved beam element with 2 nodes is formulated based on shallow beam geometry. At the element level, the curvature and membrane strain fields are approximated independently and the displacement fields are obtained by integrating the strain fields. Three test problems are given to demonstrate the numerical performance of the element. Analysis results obtained reveal that the element is free for locking and very effectively applicable to deeply as well as shallowly curved beams.

자오 변형률에 근거한 2절검 축대칭 셸요소 (Two Node Meridional Strain-based Axisymmetric Shell Elements)

  • 유하상;신효철
    • 대한기계학회논문집A
    • /
    • 제21권6호
    • /
    • pp.925-932
    • /
    • 1997
  • Two shear-flexible curved axisymmetric shell elements with two nodes, LCCS(linear curvature and constant strain) and CCCS(constant curvature and constant strain) are designed based on the assumed meridional strain fields and shallow shell geometry. At the element level, meridional curvature, membrane strain and shear strain fields are assumed by using polynomials and the displacement fields are obtained by integrating the assumed strain fields along the shallowly curved meridian. The formulated elements have high order displacement fields consistent with the strain field. Several test problems are given to demonstrate the performance of the two elements. Analysis results obtained reveal that the elements are very accurate in the displacement and the stress predictions.

절판 구조물의 해석을 위한 8절점 평면 첼 요소의 개발 (Development of 8-node Flat Shell Element for the Analysis of Folded Plate Structures)

  • 최창근;한인선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.234-241
    • /
    • 1999
  • In this study, an improved 8-node flat shell element is presented for the analysis of shell structure, by combining 8-node membrane element with drilling degree-of-freedom and 8-node plate bending element based on the recently presented technique. Firstly, 8-node membrane element designated as CLM8 is presented in this paper. The element has drilling degree-of.freedom in addition to transitional degree-of-freedom. Therefore the element possesses 3 degrees-of-freedom per each node which as well as the improvement of the element behavior, permits an easy connection to other element with rotational degree-of -freedom. Secondly. 8-node flat shell element was composed by adding 8-node Mindlin plate bending element to the membrane element. The behavior of the introduced plate bending element is further improved by combined use of nonconforming displacement modes, selectively reduced integration scheme and assumed shear strain fields. The element passes in the patch test, doesn't show spurious mechanism and doesn't produce shear locking phenomena. Finally, Numerical examples are presented to show the performance of flat shell element developed in the present study.

  • PDF

달팽이관 기저막의 이차원적 모델링 (Two-Dimensional Modelling of the Cochlear Basilar Membrane)

  • 장순석
    • 대한의용생체공학회:의공학회지
    • /
    • 제15권4호
    • /
    • pp.439-446
    • /
    • 1994
  • Two-Dimensional modelling of the Cochlear biomechanics is presented in this paper. The Laplace partial differential equation which represents the fluld mechanics of the Cochlea has been transformed into two-dimensional electrical transmission line. The procedure of this transformation is explained in detail. The comparison between one and two dimensional models is also presented. This electrical modelling of the basilar membrane (BM) is clearly useful for the next approach to the further development of active elements which are essenclal in the producing of the sharp tuning of the BM. This paper shows that two-dimension model is qualitatively better than one-dimensional model both in amplitude and phase responses of the BM displacement. The present model is only for frequency response. However because the model is electrical, the two-dimensional transmission line model can be extended to time response without any difficult.

  • PDF

Transition membrane elements with drilling freedom for local mesh refinements

  • Choi, Chang-Koon;Lee, Wan-Hoon
    • Structural Engineering and Mechanics
    • /
    • 제3권1호
    • /
    • pp.75-89
    • /
    • 1995
  • A transition membrane element designated as CLM which has variable mid-side nodes with drilling freedoms has been presented in this paper. The functional for the linear problem, in which the drilling rotations are introduced as independent variables, has been formulated. The transition elements with variable side nodes can be efficiently used in the local mesh refinement for the in-plane structures, which have stress concentrations. A modified Gaussian quadrature is needed to be adopted to evaluate the stiffness matrices of these transition elements mainly due to the slope discontinuity of displacement within the elements. Detailed numerical studies show the excellent performance of the new transition elements developed in this study.