• Title/Summary/Keyword: displacement frequency

Search Result 1,301, Processing Time 0.027 seconds

An Experimental Study on Functional Building Elements using Static Displacement Sensors and Radio Frequency (정적변위센서와 무선주파수를 이용한 기능성 건축부재에 관한 연구)

  • Kim, Dong-Hyun;Suk, Chang-Mok;Kim, Tae-Gon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.3
    • /
    • pp.79-87
    • /
    • 2012
  • In this study, static displacement sensors using lead switches are bonded on concrete beams and RC beams, and monitoring systems to crack damages are studied using radio frequency. If load is received on the center of flexible specimens, bonded static displacement sensors will be destroyed, and these become to send signals of damages at radio frequency system connected with static displacement sensors. Study of these functional building elements will be protected from external factors by unusual weather, earthquake, etc, in RC buildings and structures.

Static and Dynamic Analysis of Automotive Steering System (자동차 조향 장치의 정적 및 동적 응력해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.36-40
    • /
    • 2008
  • This study is analyzed by the simulation of automotive steering system. The maximum equivalent stress of $2.2418{\times}109Pa$ and the maximum total displacement of 0.014929m are shown at the universal joint and its lower part respectively. As the minimum cycle of 34.047 is shown at the universal joint in case of fatigue analysis, it is possible to have greatest damage at this part. In case of natural frequency analysis at vibration, its frequency of 47 to 59Hz is occurred generally. The maximum total displacement of 0.5m is shown at handle on the natural frequency of 57 to 58Hz. And the displacement over 2m is shown at the lower part of universal joint on the natural frequency of 58 to 59Hz. As the basis of the simulation analysis of steering system, passenger's comfort of car body can be improved in the design of practical part and the design effect necessary to safe driving can be promoted.

  • PDF

Influence of Applied Electric Fields and Drive Frequencies on The Actuating Displacement of a Plate-type Piezoelectric Composite Actuator (평판형 압전 복합재료 작동기의 작동 변위에 미치는 인가전압 및 구동주파수의 영향)

  • Goo Nam-Seo;Woo Sung-Choong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.576-584
    • /
    • 2006
  • The actuating performance test of plate-type piezoelectric composite actuators having different lay-up sequences was experimentally carried out at simply supported and fixed-free boundary conditions. The actuating displacement of manufactured plate-type piezoelectric composite actuator (PCA) was measured using a non-contact laser displacement measurement system. Our results revealed that the actuating displacement with increasing applied electric field at a drive frequency of 1Hz increased non-linearly at the simply supported boundary condition whereas it almost linearly increased at the fixed-free boundary condition. On the other hand, the actuating displacement of piezoelectric composite actuator depended on the applied electric field in a drive frequency range from 1Hz to 10Hz, but its behavior was different in higher drive frequencies beyond 15Hz due to the occurrence of resonance. On the basis of the above experimental results, the bending characteristics of PCAs revealed different behavior depending on applied electric fields, drive frequencies as well as boundary conditions. Therefore, by investigating drive frequencies together with applied electric fields, actuating performance can be easily controlled and PCAs which were fabricated for this study will be sufficiently applied to pumping devices.

Buckling Behavior and Variation of Dynamic Characteristics under Shear Displacement of Cylindrical Shell (원통쉘의 좌굴 거동 및 전단 변위에 따른 동적 특성 변화)

  • 이창훈;우호길;구경회;이재한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.756-759
    • /
    • 2001
  • The purpose of this paper is to investigate the buckling and dynamic characteristics for the cylindrical shell under shear loading. To do this, a vibration model tests and analyses and static buckling analyses were performed for the reduced scale model of nuclear reactor vessel. From the results of vibration modal analysis with the pre-shear displacement loads, it is known that the beam vibration mode is not affected by the shear displacement, however shell vibration modes are significantly affected by it. As the pre-shear displacement increases to the critical buckling displacement, the 1st shell vibration frequency in greatly reduces and approaches to zero value.

  • PDF

Analysis of the Mandibular Movements in Patients with Internal Derangement of the Temporomandibular Joint According to Diagnostic Subgroups (측두하악관절내장 환자의 진단분류에 따른 하악운동 특성의 분석)

  • 김병연;기우천;최재갑
    • Journal of Oral Medicine and Pain
    • /
    • v.23 no.1
    • /
    • pp.21-36
    • /
    • 1998
  • The purpose of this study was analyse the mandibular movements in patients with internal derangement of the temporomandibular joint according to diagnostic subgroups. The author classified patients with internal derangement of the temporomandibular joint into 4 diagnostic subgroups by means of the magnet resonance imagings, and evaluated the clinical signs and the mandibular movements with Mandibular Kinesiograph(MKG) in each subgroups. The mandibular movements, measured in this study, were the types of movement in frontal and sagittal plane, velocities in opening and closing movement, and the opening and closing movement, and the opening and closing velocity pattern. The data were compared between the 5 groups including the normal group. The results were as follows : 1. Pain was more frequently observed in the anterior disc displacement without reduction group than in the anterior disc displacement with reduction group. Sound of joint was more frequently observed in the anterior disc displacement with reduction group, and limitation of mandibular opening movement was more frequently observed in the anterior disc displacement without reduction group. Duration of the anterior disc displacement without reduction group was significantly short compared to that of the anterior disc displacement with reduction group, and duration of the unilateral anterior disc displacement without reduction group was shortest in the experimental group. The frequency of Angle's classifications had not significant correlations between the experimental groups. 2. Active and passive range of the opening movement, maximum protrusive movement, maximum lateral movement toward left side were significantly decreased in the experimental groups compared to the control group, but there was no significant difference in the range of the maximum lateral movement toward right side between the control and experiment groups. In unilateral anterior disc displacement without reduction group, the range of maximum lateral movement toward unaffected side was no significant difference in the range of the maximum lateral movement between toward affected side and toward unaffected side. 3. Maximum opening velocity, maximum closing velocity, average opening velocity, average closing velocity and maximum velocity of terminal tooth contact were significantly decreased in the experimental groups compared to control group. There was no significant difference in maximum opening velocity and maximum velocity of Terminal tooth contact between the subgroups of the experimental group each other, but there was significant difference in maximum closing velocity, average opening velocity and average closing velocity between the subgroups each other. 4. In the frontal plane of the MKG, the frequency of complex deviation type(F-2)pattern was significantly increased in the anterior disc displacement with out reduction group compared to the anterior disc displacement with reduction group and the control group. In the sagittal plane, the frequency of coincident type(S-1)was decreased in the same group. 5. In the maximum opening velocity pattern, the frequency of no-peak type (OV-3)in the unilateral anterior disc displacement with reduction group was significantly increased compared to the control group. The frequency of 1-peak type (OV-1) and 2-peak type (OV-2) was decreased in the anterior disc displacement with out reduction group, but the frequency of no-peak type (OV-3)was increased in the same group. In the maximum closing velocity pattern, the frequency of no-peak type (CV-3) was significantly increased in the anterior disc displacement without reduction group. Compared to the anterior disc displacement with reduction group and the control group. The frequency of 1-peak type (CV-1) and 2-peak type (CV-2) in the anterior disc displacement with reduction group was decreased than that in the control group.

  • PDF

The Long-Term Wage Effects of Job Displacement: Frequency or Cumulative Duration of Unemployment (실직이 임금에 미치는 장기적 효과 : 실직 횟수인가 누적실업기간인가?)

  • Shin, Donggyun
    • Journal of Labour Economics
    • /
    • v.27 no.3
    • /
    • pp.75-111
    • /
    • 2004
  • On the basis of data from the National Longitudinal Survey of Youth (NLSY), this paper investigates wage consequences of cumulative experience of job displacement. Unlike previous studies, we consider two measures of cumulative unemployment experience simultaneously: the total frequency and the cumulative duration of unemployment induced by job displacement. When frequency and cumulative duration compete in a wage equation, only cumulative duration remains significant for men, while only frequency matters for women. For men, a one-month increase in the cumulative duration of displacement-initiated unemployment leads to a fall in wages by 0.4 percent. This finding is quite robust with respect to various sample restrictions and/or estimation methods. For women, approximately a 2.5 percent wage reduction is associated with an additional event of displacement.

  • PDF

Study on characteristics of noncontact vibrating displacement sensor (비접촉식 진동 변위센서의 특성에 관한 연구)

  • Cho, C.W.;Cho, S.T.;Yang, K.H.
    • Journal of Power System Engineering
    • /
    • v.15 no.2
    • /
    • pp.13-18
    • /
    • 2011
  • This thesis is about the result of conducting a specific experiment for the development of noncontact vibration displacement sensor for measuring the spindle vibration that is used for conditional monitoring of machinery. One should be careful when using the eddy current type displacement sensor because the sensitivity of it is different according to the quality of the material. While the probe used for nondestructive inspection adopts the effect of transmitting the material by using the high frequency domain, the eddy current type displacement sensor uses the lower frequency of around 1MHz. Also, while the nondestructive probe uses the method of enhancing output by using the resonance zone, the vibration displacement sensor utilizes the stable zone by avoiding the resonance zone. Since the oscillator of the converter uses the "L" element as Probe, its characteristic changes with the variation of a relevant impedance. In other words, if the length of Probe's Cable gets extended (Impedance increase), the sensitivity declines accordingly. The effect of surrounding temperature was small, but the influence of the quality of Sensor Coil used was high. Moreover, following an experimental demonstration of the phenomenon where the sensitivity decreases as the frequency of the tested material increases from a frequency response test, the maximum frequency that could be measured was approximately 1KHz. It was noted that the degree of precision could be maintained by using the gap of the probe in the linear zone at the installation site.

Optimal Design of Piezoelectric Cantilever Fan by Three-Dimensional Finite Element Analysis

  • Kim Byoung-Jai;Rho Jong-Seok;Jung Hyung-Kyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.1
    • /
    • pp.90-94
    • /
    • 2005
  • As the structure of the piezoelectric bimorph cantilever becomes increasingly more complicated, a more accurate and efficient analysis of piezoelectric media is needed. In this paper, the piezoelectric transducer is analyzed by using the three-dimensional finite element method. The validity of the three-dimensional finite element routine is confirmed by comparing the experimental result. The resonance characteristics, such as resonance frequency and anti-resonance frequency, of the piezoelectric cantilever are calculated by the experimentally verified three dimensional finite element method. Subsequently, the characteristics, such as mechanical displacement and impedance, are calculated at the resonance frequency. Besides, to design the piezoelectric bimorph cantilever shape that maximizes displacement at the tip, the ES (Evolution Strategy) algorithm is applied. Finally, optimal design for the fan of the piezoelectric cantilever is fulfilled to obtain maximum displacement at the tip. From these results, the application potentiality of the piezoelectric bimorph cantilever fan is identified.

Sub-pixel Evaluation with Frequency Response Analysis

  • OKAMOTO Koji
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.14-22
    • /
    • 2001
  • The frequency responses on the sub-pixel evaluation technique were investigated using the Monte-calro Simulation technique. The frequency response by the FFT based cross-correlation gives very good results, however, the gain loss does exist for the small displacement, (less than 0.5 pixel). While, the no gain loss is observed in the Direct Cross-correlation, however, the sub-pixel accuracy was limited to be about 0.1 pixel, i.e., it could not detect the small displacement. To detect the higher accurate sub-pixel displacement, the gradient based technique is the best. For the small interrogation area (e.g., 4x4), only the gradient technique can detect the small displacement correctly.

  • PDF

A Study on the Phase Bandwidth Frequency of a Directional Control Valve Based on the Hydraulic Line Pressure (배관 압력을 이용한 방향제어밸브 위상각 대역폭 주파수 측정에 관한 연구)

  • Kim, Sungdong;Lee, Jung-eun;Shin, Daeyoung
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.1-10
    • /
    • 2018
  • Spool displacement of a direction control valve is the standard signal to measure the bandwidth frequency of the direction control valve. When the spool displacement signal is not available, it is suggested in this study to use the metering hydraulic line as an alternative way to measure - 90 degree phase bandwidth frequency of the hydraulic direction control valve. Dynamics of the hydraulic line is composed of inertia, capacitance, and friction effects. The effect of oil inertia is dominant in common hydraulic line dynamics and the line dynamics is close to a derivative action in a range of high frequency; such as a range of bandwidth frequency of common directional control valves. Phase difference between spool displacement and line load pressure is nearly constant as a valve close to 90 degree. If phase difference is compensated from the phase between valve input and pressure, compensated phase may be almost same as the phase of spool displacement that is a standard signal to measure phase bandwidth frequency of the directional control valve. A series of experiments were conducted to examine the possibility of using line pressure in to measure phase bandwidth frequency of a directional control valve. Phase bandwidth frequency could be measured with relatively high precision based on metering hydraulic line technique and it reveals consistent results even when valve input, oil temperature, and supply pressure change.