• Title/Summary/Keyword: displacement fields

Search Result 344, Processing Time 0.03 seconds

Hysteretic Damage Model for Reinforced Concrete Joints Considering Bond-Slip (부착-슬립을 고려한 철근콘크리트 접합부의 이력 손상 모델 개발)

  • Kim, Do-Yeon;Choi, In-Kil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.517-528
    • /
    • 2008
  • This paper presents a hysteretic damage model for reinforced concrete (RC) joints that explicitly accounts for the bond-slip between the reinforcing bars and the surrounding concrete. A frame element whose displacement fields for the concrete and the reinforcing bars are different to permit slip is developed. From the fiber section concept, compatibility equations for concrete, rebar, and bond are defined. Modification of the hysteretic stress-strain curve of steel is conducted for partial unloading and reloading conditions. Local bond stress-slip relations for monotonic loads are updated at each slip reversal according to the damage factor. The numerical applications of the reinforcing bar embedded in the confined concrete block, the RC column anchored in the foundation, and the RC beam-column subassemblage validate the model accuracy and show how including the effects of bond-slip leads to a good assessment of the amount of energy dissipation during loading histories.

Non-statistical Stochastic Finite Element Method Employing Higher Order Stochastic Field Function (고차의 추계장 함수와 이를 이용한 비통계학적 추계론적 유한요소해석)

  • Noh, Hyuk-Chun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.383-390
    • /
    • 2006
  • In this paper, a stochastic field that is compatible with Monte Carlo simulation is suggested for an expansion-based stochastic analysis scheme of weighted integral method. Through investigation on the way of affection of stochastic field function on the displacement vector in the series expansion scheme, it is noticed that the stochastic field adopted in the weighted integral method is not compatible with that appears in the Monte Carlo simulation. As generally recognized in the field of stochastic mechanics, the response variability is not a linear function of the coefficient of variation of stochastic field but a nonlinear function with increasing variability as the intensity of uncertainty is increased. Employing the stochastic field suggested in this study, the response variability evaluated by means of the weighted integral scheme is reproduced with high precision even for uncertain fields with moderately large coefficient of variation. Besides, despite the fact that only the first-order expansion is employed, an outstanding agreement between the results of expansion-based weighted integral method and Monte Carlo simulation is achieved.

Effect of Aligned Steel Fibers by a Solenoid on Flexural Fracture Behavior (솔레노이드에 의해 정렬된 강섬유가 휨파괴 거동에 미치는 영향)

  • Gyu-Pil Lee;Do-Young Moon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.193-200
    • /
    • 2023
  • This paper investigates the effect of directional alignment of steel fibers using an electromagnetic field on the flexural fracture behavior of steel fiber reinforced concrete. A specially designed and manufactured solenoid, capable of aligning steel fibers in the longitudinal direction of the beam specimen, was employed for this purpose. Beam specimens with a design strength of 30 MPa were produced, and failure tests were conducted on specimens exposed to electromagnetic fields and those without exposure. Experimental variables included the mixing ratio and aspect ratio of steel fibers. The results of the experiments revealed a slight increase in flexural strength and crack mouth opening displacement at the maximum load for specimens exposed to the electromagnetic field. Notably, a significant enhancement in fracture energy was observed.

A Kinematic Comparative Analysis of Yoko Ukemi(side breakfall) by Each Stage in Judo[ I ] (유도 단계별 측방낙법의 운동학적 변인 비교분석[ I ])

  • Kim, Eui-Hwan;Kim, Sung-Sup
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.203-218
    • /
    • 2004
  • The purpose of this study was to analyze the comparisons of the kinematical variables when performing Yoko Ukemi(side breakfall) by three Stage in Judo. The subjects were four male judokas who were trainees Y. I. University Squad members and the Yoko Ukemi were filmed by two S-VHS 16mm video cameras(60fields/sec.). The selected times were subject to KWON 3D analysis program and kinematical analysis to compare variables of three Yoko Ukemi. Temporal variables(total time-required : TK, TR by each phase), the body part touched order on the mat and COG variables were computed through video analysis while performing right Yoko Ukemi by three stage. From the data analysis and discussion, the following conclusions were drawn : 1. Temporal variables : total time-required(TR) when performing Yoko Ukemi(side breakfall) by each stage, the first stage(full squat posture: FP : 1.11sec.) showed the shortest time, the next was 3rd(Shizenhontai, straight natural posture: NP : 1.41sec.), and 2nd(Jigohontai, straight defensive posture, DP : 1.42sec.), respectively- 2. TR when performing Yoko Ukemi(side breakfall) by each stage, and phase : the first phase(take of phase, average 0.68sec.) showed the longest time, next was the third phase(ukemi phase, 0.39sec.), and the second phase(air phase, 0.23sec.), respectively. 3. When performing yore Ukemi the body part touched order and TR on the mat : hip(0.94sec.) showed the shortest time, the next was elbow hand(0.97sec.), back(0.98sec.), and shoulder(1.04sec.) order. The hip part touched on the mat the first, but slap the mat in order to alleviate the shock try hand palm and forearm before receiving impact (difference 0.03sec,) 4. Vertical COG variables in each event by each stage : e1(ready position, average 78.33cm) moved the highest, the next was e2(jumping position, 70.14cm), e3(transition position, average 64.00cm), e4(landing position, average 35.99cm), and e5(ukemi position, average 18.32cm) order, gradual decrease respectively. And the difference of COG were showed in initial by each stage, because position fo Yoko Ukemi was difference by each stage in preparation position, but in accordance with executing of Ukemi phase that difference of COG was by decreasing, almost equal displacement in e4(landing) and e5(Ukemi)position finally.

Effect of Different Heel Plates on Muscle Activities During the Squat (스쿼트 동작 시 발뒤꿈치 보조물 경사각에 따른 하지근과 척추기립근의 근육활동 비교)

  • Chae, Woen-Sik;Jeong, Hyeun-Kyeong;Jang, Jae-Ik
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.113-121
    • /
    • 2007
  • The purpose of this study was to determine the effect of three different plates($0^{\circ}$, $10^{\circ$}, $20^{\circ}$)under heels on the lower limb muscles and erector spinae during squat exercise. Ten high school korean traditional wrestling players(age: $18.5{\pm}0.7$, weight: $1972.2{\pm}128.5N$, height: $177.8{\pm}6.0cm$, weight of barbell: $1004.5{\pm}132.4N$) performed squat exercise using three different tilting plates under heels at a cadence of 40beats/sec with 80% one repetition maximum load. Surface electrodes were placed on the participants' left and right erector spinae, and rectus femoris, vastus medialis, vastus lateralis, tibialis anterior, biceps femoris, medial gastrocnemius, and lateral gastrocnemius in the right lower extremity. One S-VHS camcorder(Panasonic AG456, 60fields/s) was placed 10m to the side of the participant. To synchronize the video and EMG data, a synchronization unit was used for this study. Average and Peak IEMG values were determined for each participant. For each variable, a one-way analysis of variance was used to determine whether there were significant differences among three different tilting plates under heels. When a significant difference was found in plates type, post hoc analyses were performed using the Tukey procedure. A confidence level of p<.05 was used to determine statistical significance. As a result of this study, maximum nEMG values of the tibialis anterior in $0^{\circ}$ plates was significantly higher than the corresponding values for the other plates during the knee extension. This increased activation in the tibialis anterior muscle indicates an increase in displacement of center of gravity of body. It is very likely that additional muscle activation are needed to stop the forward and backward movement. The results also showed that muscular activities of quadriceps femoris and erector spinae were decreased with increasing angle of plates. This suggests that increasing angle of plate may help to sustain the balance and posture of squat exercise. It is considered that very few significant differences were found among three different plates($0^{\circ}$, $10^{\circ}$, $20^{\circ}$) since elite players with much experience in squat exercise, were chosen as a participant of this study. In order to obtain meaningful results regarding the tilting angle of heel plates in squat exercise, kinetic and 3D kinematic analysis will be needed in the future study.

The Comparative Kinematic Analysis of a Volleyball Spike Serve (배구 스파이크 서브 동작의 운동학적 비교 분석)

  • Park, Jong-Chul;Back, Jin-Ho;Lee, Jin-Taek
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.4
    • /
    • pp.671-680
    • /
    • 2009
  • We performed a study to obtain kinematic data on the characteristics of spike serving techniques used by volleyball players, including other basic data that will be useful for in-field applications. We used three-dimensional videography to compare good tough serves and serve errors. The subjects were 3 left attackers whose spike serves were videographed (60 fileds/s). The three-dimensional coordinates were calculated using the direct linear transformation method and then analyzed using the Kwon 3D software program version 3.1. There was no difference in time elapsed. However, the vertical displacement of the center of body mass(CM) differed between the 2 types of serves: in successful serves, the CM tended to be lower, as did the maximum ball height at the time of hitting. Further, the higher the level of the hitting hand was at the moment of impact, the higher was the likelihood of scoring points. In good serves, the players tended to accelerate their CM movement just before jumping to hit the ball and descend rapidly at the moment of hitting. The hand speed along with ball velocity during the impact was proven to be higher in successful serves. Moreover, in successful serves, the shoulder angles increased to a greater extent while the elbow angles were maintained constant. This possibly resulted in faster and more precise serves. An important observation was that the angle of trunk inclination during the jump did not increase with the swing of the shoulders, muscle tendon complex.

Accuracy Evaluation by Point Cloud Data Registration Method (점군데이터 정합 방법에 따른 정확도 평가)

  • Park, Joon Kyu;Um, Dae Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.1
    • /
    • pp.35-41
    • /
    • 2020
  • 3D laser scanners are an effective way to quickly acquire a large amount of data about an object. Recently, it is used in various fields such as surveying, displacement measurement, 3D data generation of objects, construction of indoor spatial information, and BIM(Building Information Model). In order to utilize the point cloud data acquired through the 3D laser scanner, it is necessary to make the data acquired from many stations through a matching process into one data with a unified coordinate system. However, analytical researches on the accuracy of point cloud data according to the registration method are insufficient. In this study, we tried to analyze the accuracy of registration method of point cloud data acquired through 3D laser scanner. The point cloud data of the study area was acquired by 3D laser scanner, the point cloud data was registered by the ICP(Iterative Closest Point) method and the shape registration method through the data processing, and the accuracy was analyzed by comparing with the total station survey results. As a result of the accuracy evaluation, the ICP and the shape registration method showed 0.002m~0.005m and 0.002m~0.009m difference with the total station performance, respectively, and each registration method showed a deviation of less than 0.01m. Each registration method showed less than 0.01m of variation in the experimental results, which satisfies the 1: 1,000 digital accuracy and it is suggested that the registration of point cloud data using ICP and shape matching can be utilized for constructing spatial information. In the future, matching of point cloud data by shape registration method will contribute to productivity improvement by reducing target installation in the process of building spatial information using 3D laser scanner.

The Effects of Wearing Roller Shoes on Ground Reaction Force Characteristics During Walking (롤러 신발과 조깅 슈즈 신발 착용 후 보행 시 지면반력의 형태 비교 분석)

  • Chae, Woen-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.101-108
    • /
    • 2006
  • The purpose of this study was to compare GRF characteristics during walking wearing jogging and roller shoes. Twelve male middle school students (age: $15.0{\pm}0.0\;yrs$, height: $173.6{\pm}5.0\;cm$, weight: $587.6{\pm}89.3\;N$) who have no known musculoskeletal disorders were recruited as the subjects. Kinematic data from six S-VHS camcorders(Panasonic AG456, 60 fields/s) and GRF data from two force platform; (AMII OR6-5) were collected while subjects walked wearing roller and jogging shoes in random order at a speed of 1.1 m/s. An event sync unit with a bright LED light was used to synchronize the video and GRF recordings. GRF data were filtered using a 20 Hz low pass Butterworth. digital filter and further normalized to the subject's body weight. For each trial being analyzed, five critical instants and four phases were identified from the recording. Temporal parameters, GRFs, displacement of center of pressure (DCP), and loading and decay rates were determined for each trial. For each dependent variable, paired t-test was performed to test if significant difference existed between shoe conditions (p <.05). Vertical GRFs at heel contact increased and braking forces at the end of initial double limb stance reduced significantly when going from jogging shoe to roller shoe condition. Robbins and Waked (1997) reported that balance and vertical GRF are closely related It seems that the ankle and knee joints are locked in an awkward fashion at the heel contact to compensate for the imbalance. The DCP in the antero-posterior direction for the roller shoe condition was significantly less than the corresponding value for the jogging shoe condition. Because the subjects tried to keep their upper body weight in front of the hip to prevent falling backward, the DCP for the roller shoe condition was restricted The results indicate that walking with roller shoes had little effect on temporal parameters, and loading and decay rates. It seems that there are differences in GRF characteristics between roller shoe and jogging shoe conditions. The differences in GRF pattern may be caused primarily by the altered position of ankle, knee, and center of mass throughout the walking cycle. Future studies should examine muscle activation patterns and joint kinematics during walking with roller shoes.

EFFECT OF PULSING ELECTROMAGNETIC FIELDS COMBINED WITH ANTERIOR MANDIBULAR DISPLACEMENT ON CONDYLAR GROWTH IN THE RAT (맥동 전자기장과 하악골 전방이동이 백서의 하악과두 성장에 미치는 영향에 관한 실험적 연구)

  • Yang, Sang-Duk;Suhr, Cheong-Hoon
    • The korean journal of orthodontics
    • /
    • v.20 no.3 s.32
    • /
    • pp.463-498
    • /
    • 1990
  • 전기적 자극에 의한 골성장기전의 개념을 이용하여 임상적 효율성을 증진시키기 위한 연구는 현재 교정학을 비롯한 치과영역에서 활발히 진행되고 있는 분야 중의 하나이다. 전기적 자극의 여러 형태 중의 하나인 전자기장과 하악의 기능적 전방 이동을 유도하는 악기능교정장치가 백서의 하악과두 성장에 미치는 영향을 구명하기 위하여 본 연구를 시행하였다. 생후 4주된 Sprague Dawley계 백서 48마리를 대조군 12마리, 실험군 36마리로 나누고, 실험군은 다시 전자기장을 가한 군, 하악골 전방이동 장치를 장착시킨 군, 전자기장과 하악골 전방이동 장치를 병용시킨 군으로 분류하여 각각 12마리씩 실험동물을 배정하였다. 각 군의 실험동물은 15 HZ의 특수 전자기장이나 하악전방이동 자치가 하루10시간씩 작용되도록 특별히 제작한 실험장치 속에 넣어 1주간, 4주간씩 사육하여 희생시킨 후 하악골을 분리하고 연조직을 박리한 후 $10\%$ formalin에 보관하였다. 하악골 길이를 측정하기 위해 0.05mm까지 계측 가능한 캘리퍼를 이용하여 하악과두의 후연에서 이공까지의 거리를 계측하였고, 하악과두를 절제하여 0.5M EDTA에 탈회시켜 파라핀 포매를 하였다. 표본의 절단방향은 시상평면에 평행하게 하여 $6{\mu}m$두께로 연속절단 하였으며, 그 중 중심의 3절편을 취하여 통법에 의한 H-E 중염색을 시행하였다. 하악골 계측과 H-E 중염색 표본을 통한 조직학적 관찰을 통해 다음과 같은 결론을 얻었다. 1. 4주군에서 전자기장만에 노출된 실험군은 대조군에 비해 하악골 길이가 유익성 있게 증가되었다. 2. 전자기장과 하악골 전방이동 장치를 병용한 실험군은 하악골 전방이동장치만을 사용한 실험군에 비하여 하악골 길이가 증가되었다. 3. 전자기장에 노출된 실험군은 전구 연골아세포(prechondroblast)의 증식, 비대연골 세포층의 세포간질 및 연골내 골화층의 석회화가 모두 증가되었다. 4. 본 실험에 사용한 15 HZ전자기장의 주요작용부위는 백서의 하악과두 성장지역 중 연골내 골화의 석회화 지역이며, 또한 이는 하악골 전방이동 장치와 병용시 하악과두 성장을 촉진시킬 수 있음이 관찰되었다.

  • PDF

Measurement System of Dynamic Liquid Motion using a Laser Doppler Vibrometer and Galvanometer Scanner (액체거동의 비접촉 다점측정을 위한 레이저진동계와 갈바노미터스캐너 계측시스템)

  • Kim, Junhee;Shin, Yoon-Soo;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.5
    • /
    • pp.227-234
    • /
    • 2018
  • Researches regarding measurement and control of the dynamic behavior of liquid such as sloshing have been actively on undertaken in various engineering fields. Liquid vibration is being measured in the study of tuned liquid dampers(TLDs), which attenuates wind motion of buildings even in building structures. To overcome the limitations of existing wave height measurement sensors, a method of measuring liquid vibration in a TLD using a laser Doppler vibrometer(LDV) and galvanometer scanner is proposed in this paper: the principle of measuring speed and displacement is discussed; a system of multi-point measurement with a single point of LDV according to the operating principles of the galvanometer scanner is established. 4-point liquid vibration on the TLD is measured, and the time domain data of each point is compared with the conventional video sensing data. It was confirmed that the waveform is transformed into the traveling wave and the standing wave. In addition, the data with measurement delay are cross-correlated to perform singular value decomposition. The natural frequencies and mode shapes are compared using theoretical and video sensing results.