• Title/Summary/Keyword: displacement field

Search Result 1,517, Processing Time 0.031 seconds

Prediction of nominal wake of a semi-displacement high-speed vessel at full scale

  • Can, Ugur;Bal, Sakir
    • Ocean Systems Engineering
    • /
    • v.12 no.2
    • /
    • pp.143-157
    • /
    • 2022
  • In this study, the nominal wake field of a semi-displacement type high-speed vessel was computed at full scale by using CFD (Computational Fluid Dynamics) and GEOSIM-based approaches. A scale effect investigation on nominal wake field of benchmark Athena vessel was performed with two models which have different model lengths. The members of the model family have the same Fr number but different Re numbers. The spatial components of nominal wake field have been analyzed by considering the axial, radial and tangential velocities for models at different scales. A linear feature has been found for radial and tangential components while a nonlinear change has been obtained for axial velocity. Taylor wake fraction formulation was also computed by using the axial wake velocities and an extrapolation technique was carried out to get the nonlinear fit of nominal wake fraction. This provides not only to observe the change of nominal wake fraction versus scale ratios but also to estimate accurately the wake fraction at full-scale. Extrapolated full-scale nominal wake fractions by GEOSIM-based approach were compared with the full-scale CFD result, and a very good agreement was achieved. It can be noted that the GEOSIM-based extrapolation method can be applied for estimation of the nominal wake fraction of semi-displacement type high-speed vessels.

4D full-field measurements over the entire loading history: Evaluation of different temporal interpolations

  • Ana Vrgoc;Viktor Kosin;Clement Jailin;Benjamin Smaniotto;Zvonimir Tomicevic;Francois Hild
    • Coupled systems mechanics
    • /
    • v.12 no.6
    • /
    • pp.503-517
    • /
    • 2023
  • Standard Digital Volume Correlation (DVC) approaches are based on pattern matching between two reconstructed volumes acquired at different stages. Such frameworks are limited by the number of scans (due to acquisition duration), and time-dependent phenomena can generally not be captured. Projection-based Digital Volume Correlation (P-DVC) measures displacement fields from series of 2D radiographs acquired at different angles and loadings, thus resulting in richer temporal sampling (compared to standard DVC). The sought displacement field is decomposed over a basis of separated variables, namely, temporal and spatial modes. This study utilizes an alternative route in which spatial modes are con-structed via scan-wise DVC, and thus only the temporal amplitudes are sought via P-DVC. This meth-od is applied to a glass fiber mat reinforced polymer specimen containing a machined notch, subjected to in-situ cyclic tension, and imaged via X-Ray Computed Tomography. Different temporal interpolations are exploited. It is shown that utilizing only one DVC displacement field (as spatial mode) was sufficient to properly capture the complex kinematics up to specimen failure.

Digital Twin Model of a Beam Structure Using Strain Measurement Data (보 구조물에서 변형률 계측 데이터를 활용한 디지털트윈 모델 구현)

  • Han, Man-Seok;Shin, Soo-Bong;Moon, Tae-Uk;Kim, Da-Un;Lee, Jong-Han
    • Journal of KIBIM
    • /
    • v.9 no.3
    • /
    • pp.1-7
    • /
    • 2019
  • Digital twin technology has been actively developed to monitor and assess the current state of actual structures. The digital twin changes the traditional observation method performed in the field to the real-time observation and detection system using virtual online model. Thus, this study designed a digital twin model for a beam and examined the feasibility of the digital twin for bridges. To reflect the current state of the bridge, model updating was performed according to the field test data to construct an analysis model. Based on the constructed bridge analysis model, the relationship between strain and displacement was used to represent a virtual model that behaves in the same way as the actual structure. The strain and displacement relationship was expressed as a matrix derived using an approximate analytical theory. Then, displacements can be obtained using the measured data obtained from strain sensors installed on the bridge. The coordinates of the obtained displacements are used to construct a virtual digital model for the bridge. For verification, a beam was fabricated and tested to evaluate the digital twin model constructed in this study. The displacements obtained from the strain and displacement relationship agrees well with the actual displacements of the beam. In addition, the displacements obtained from the virtual model was visualized at the locations of the strain sensor.

Stability Evaluation of Sheet-pile Walls during Excavation Works in Soft Ground (연약지반 굴착시 강널말뚝 흙막이벽의 안정성 평가)

  • Hong, Won-Pyo;Kim, Dong-Wook;Song, Young-Suk;Lee, Jae-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1442-1447
    • /
    • 2005
  • Based on the field measuring data obtained from excavation sections in Inchon International Airport project, the relationships between the horizontal displacement of sheet-pile walls and the deformations of soft ground around the excavation were investigated. The horizontal displacements of walls according to supporting method are largely occurred in order of anchors, anchors with struts, and struts. The depths of maximum horizontal displacement are varied with supporting systems. If the stability number shows lower than ${\pi}$, the maximum horizontal displacement and the velocity of maximum horizontal displacement are respectively developed less than 1% of excavation depth and 1mm/day. When the stability number shows lower than ${\pi}+2$, the maximum horizontal displacement and the velocity are respectively developed less than 2.5% of excavation depth and 2mm/day. Also, when the stability number shows more than ${\pi}+2$, the maximum horizontal displacement and the velocity are rapidly increased.

  • PDF

Displacement of Quaywall Pile by Lateral Movement of Revetment on Soft Ground (연약지반상에 축조된 호안의 측방유동에 따른 안벽말뚝의 변위)

  • Shin, Eun-Chul;Ryu, In-Gi;Kim, Jong-In
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.932-939
    • /
    • 2005
  • Recently, the lateral displacement of the passive piles which installed under the revetment on soft ground is very important during the land reclamation work along the coastal line. The revetment on the soft clay develops the lateral displacement of the ground when the revetment loading is exceeded a certain limit. The lateral displacement of ground causes an excessive deformation of under structure itself and develops lateral earth pressure against the pile foundation as well. Especially passive piles subjected to lateral earth pressures are likely to have excessive horizontal displacement and large bending moment, which induces structural failure of pile foundation and harmful effects on superstructure. The subject of study is to investigate the later displacement of pile foundation during the construction of container terminal at the south port of Incheon. Actual field measurement data and finite element method(FEM) by AFFIMEX Ver 3.4 were used to analyze the displacement of pile and the vertical settlement of soft ground. This analysis was carried out at each sequence of construction work.

  • PDF

Load Capability in a Bending Piezoelectric Composite Actuator with a Thin Sandwiched PZT Plate (굽힘 압전 복합재료 작동기의 하중 특성)

  • Woo, Sung-Choong;Goo, Nam-Seo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.8
    • /
    • pp.880-888
    • /
    • 2007
  • This article describes the load capability of bending piezoelectric actuators with a thin sandwiched PZT plate in association with the stored elastic energy induced by an increased dome height after a curing process. The stored elastic energy within the actuators is obtained via a flexural mechanical bending test. The load capability is evaluated indirectly in terms of an actuating displacement with a load of mass at simply supported and fixed-free boundary conditions. Additionally, a free displacement under no load of mass is measured for a comparison with an actuating displacement. The results reveal that an actuator with a top layer having a high elastic modulus and a low coefficient of thermal expansion exhibits a better performance than the rest of actuators in terms of free displacement as well as actuating displacement due to the formation of the large stored elastic energy within the actuator system. When actuators are excited at AC voltage, the actuating displacement is rather higher than the free displacement for the same actuating conditions. In addition, the effect of PZT ceramic softening results in a slight reduction in the resonance frequency of each actuator as the applied electric field increases. It is thus suggested that the static and dynamic actuating characteristics of bending piezoelectric composite actuators with a thin sandwiched PZT plate should be simultaneously considered in controlling the performance.

The Problem of using N-value to assume the displacement depth (실무에서의 N척 적용 및 문제점 (연약한 해성점토층의 경우))

  • 이충호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10a
    • /
    • pp.293-298
    • /
    • 2001
  • N-value is usually used to assume the displacement depth of embankment on the soft marine clay. But N-value of the soft marine clay tend to underestimate unlike overestimating of general cases. In general case, if the length of rod is more long then N-value is more large because it is under the influence of energy loss of hammer blow. So it is reasonable to correct N-value down. But in the case of soft marine clay, N-value must not be correct down. Especially to assume the displacement depth of embankment on the soft marine clay, it must be used laboratory test results or CPT, Vane Test than N-value. In this study, it is compared with two field cases that design displacement method of embankment.

  • PDF

Response Characteristics According to the Selection Procedure of Near Field EQGMS (Near field 지진기록 분류에 따른 특성 비교)

  • 배미혜;한상환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.527-532
    • /
    • 2002
  • Near field ground motions contain distinct and large amplitude pulses in both velocity and displacement. This paper investigates characteristics of near field earthquakes and their effects on seismic demands. 20 EQGMs were selected for this purpose that satisfied 5 conditions for Near field motion. Among them ten EQGMs have one distinct peak velocity pulse in the velocity time history. In this study the responsed are Linear Elastic Response Spectrum(LERS), Response Modification Factor(R) and Inelastic Response Spectrum(IRS). The effect of the selection of Near field EQGMs on these response parameters are investigated.

  • PDF

HIGHER ORDER ZIG-ZAG PLATE THEORY FOR COUPLED THERMO-ELECTRIC-MECHANICAL SMART STRUCTURES (열-기계-전기 하중이 완전 연계된 지능 복합재 평판의 지그재그 고차이론)

  • 오진호;조맹효
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.114-117
    • /
    • 2001
  • A higher order zig-zag plate theory is developed to refine accurately predict fully coupled of the mechanical, thermal, and electric behaviors. Both the displacement and temperature fields through the thickness are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field. Smooth parabolic distribution through the thickness is assumed in the transverse deflection in order to consider transverse normal deformation. Linear zig-zag form is adopted in the electric field. The layer-dependent degrees of freedom of displacement and temperature fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses and transverse heat flux The numerical examples of coupled and uncoupled analysis are demonstrated the accuracy and efficiency of the present theory. The present theory is suitable for the predictions of fully coupled behaviors of thick smart composite plate under mechanical, thermal, and electric loadings.

  • PDF

Program Development for the Underwater-Acoustic Characteristic Analysis of Magnetostrictive Tonpilz Transducer (자왜 Tonpilz 변환기의 음향특성 해석 프로그램 개발)

  • Jung, E.M.;Kim, Jae-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.705-710
    • /
    • 2002
  • Magnetostrictive materials are used low frequency sonar transmitter instead of piezoelectric materials. But it is difficult to analyze due to the nonlinearity and hysteresis of magnetostrictive materials. This paper deals with the program development for the finite element modeling of magnetostrictive tonpilz transducers and for analyzing their acoustic characteristics. To take into account the nonlinearity of magnetostrictive materials, the magnetic field calculation is separated form the displacement calculation, and a curve fitting is adopted for the nonlinear behavior of the magnetic and mechanical strain fields. At first, the magnetic field is obtained by using a commercial FEM software and the displacement of the transducer is calculated by plugging the obtained magnetic field into forcing term. To verity the accuracy of the developed program, a comparison is made with a commercial code, ATILA.

  • PDF