• 제목/요약/키워드: displacement factor

검색결과 959건 처리시간 0.024초

균열을 가진 압전재료에서의 가중함수이론 (Weight Function Theory for Piezoelectric Materials with a Crack)

  • 손인호;안득만
    • 한국정밀공학회지
    • /
    • 제20권7호
    • /
    • pp.208-216
    • /
    • 2003
  • In this paper, a two-dimensional electroelastic analysis is performed on a piezoelectric material with an open crack. The approach of Lekhnitskii's complex potential functions is used in the derivation and Bueckner's weight function theory is extended to piezoelectric materials. The stress intensity factors and the electric displacement intensity factor are calculated by the weight function theory.

균열을 가진 압전재료에 대한 면외 변형에서의 가중함수이론 (Weight Function Theory for Piezoelectric Materials with Crack in Anti-Plane Deformation)

  • 손인호;안득만
    • 한국해양공학회지
    • /
    • 제24권3호
    • /
    • pp.59-63
    • /
    • 2010
  • In this paper, an electroelastic analysis is performed on a piezoelectric material with an open crack in anti-plane deformation. Bueckner’s weight function theory is extended to piezoelectric materials in anti-plane deformation. The stress intensity factors and electric displacement intensity factor are calculated by the weight function theory.

프레스톤 튜브를 이용한 벽면전단응력 측정에 관한 실험적 연구 (Measurement of Wall Shear Stress Using Preston Tubes)

  • 강신형;윤민수;전우평
    • 대한기계학회논문집
    • /
    • 제18권7호
    • /
    • pp.1873-1880
    • /
    • 1994
  • Fully developed turbulent flow in a circular pipe and laminar boundary layer on a flat plate were measured to develop a measuring technique of the wall sheat stress using Preston tubes. New empirical formulas to extimate displacement factor of Preston tube obtained through the present study. The displacement factor for turbulent flow was considerably different from that for the laminar flow. Measured wall shear stress was not pretty dependent on the displacement factor for Preston tubes in the inertia sublayer of turbulent boundary layer, however was considerably affected in the laminar boundary layer. Measuring error of skin friction using the CPM technique was 3% for turbulent and 5% for thin laminar boundary layers.

CPM을 이용한 평판위 천이경계층에서 벽 마찰응력의 계측 (Measurement of Wall Shear Stress in Transitional Boundary Layer on a Flat Plate Using Computational Preston Tube Method)

  • 전우평;강신형
    • 대한기계학회논문집
    • /
    • 제19권1호
    • /
    • pp.240-250
    • /
    • 1995
  • A CPM (computational preston tube method) was developed to measure wall shear stress in a transitional boundary layer on a flat plate using Preston tubes. Correlation for the displacement factor of Preston tubes was improved for a CPM to be used in the transitional boundary layer. The distribution of skin-friction coefficient was reasonably predicted in the uniform free stream of 3.1% turbulence intensity. Reasonable and accurate estimation of displacement factor of Preston tubes was found to be of crucial importance for the CPM, especially in the laminar boundary layer. The mean velocity profiles of the boundary layer on the plate were also measured and presented.

An investigation of seismic parameters of low yield strength steel plate shear walls

  • Soltani, Negin;Abedi, Karim;Poursha, Mehdi;Golabi, Hassan
    • Earthquakes and Structures
    • /
    • 제12권6호
    • /
    • pp.713-723
    • /
    • 2017
  • Steel plate shear walls (SPSWs) are effective lateral systems which have high initial stiffness, appropriate ductility and energy dissipation capability. Recently, steel plate shear walls with low yield point strength (LYP), were introduced and they attracted the attention of designers. Structures with this new system, besides using less steel, are more stable. In the present study, the effects of plates with low yield strength on the seismic design parameters of steel frames with steel plate shear walls are investigated. For this purpose, a variety of this kind of structures with different heights including the 2, 5, 10, 14 and 18-story buildings are designed based on the AISC seismic provisions. The structures are modeled using ANSYS finite element software and subjected to monotonic lateral loading. Parameters such as ductility (${\mu}$), ductility reduction ($R_{\mu}$), over-strength (${\Omega}_0$), displacement amplification ($C_d$) and behavior factor (R) of these structures are evaluated by carrying out the pushover analysis. Analysis results indicate that the ductility, over-strength and behavior factors decrease by increasing the number of stories. Also, the displacement amplification factor decreases by increasing the number of stories. Finally, the results were compared with the suggestions provided in the AISC code for steel plate shear walls. The results indicate that the values for over-strength, behavior and displacement amplification factors of LYP steel plate shear wall systems, are larger than those proposed by the AISC code for typical steel plate shear wall systems.

Evaluating the reliability of using the deflection amplification factor to estimate design displacements with accidental torsion effects

  • Lin, Jui-Liang;Wang, Wei-Chun;Tsai, Keh-Chyuan
    • Earthquakes and Structures
    • /
    • 제8권2호
    • /
    • pp.443-462
    • /
    • 2015
  • Some model building codes stipulate that the design displacement of a building can be computed using the elastic static analysis results multiplied by the deflection amplification factor, $C_d$. This approach for estimating the design displacement is essential and appealing in structural engineering practice when nonlinear response history analysis (NRHA) is not required. Furthermore, building codes stipulate the consideration of accidental torsion effects using accidental eccentricity, whether the buildings are symmetric-plan, or asymmetric-plan. In some model building codes, the accidental eccentricity is further amplified by the torsional amplification factor $A_x$ in order to minimize the discrepancy between statically and dynamically estimated responses. Therefore, this warrants exploration of the reliability of statically estimated design displacements in accordance with the building code requirements. This study uses the discrepancy curves as a way of assessing the reliability of the design displacement estimates resulting from the factors $C_d$ and $A_x$. The discrepancy curves show the exceedance probabilities of the differences between the statically estimated design displacements and NRHA results. The discrepancy curves of 3-story, 9-story, and 20-story example buildings are investigated in this study. The example buildings are steel special moment frames with frequency ratios equal to 0.7, 1.0, 1.3, and 1.6, as well as existing eccentricity ratios ranging from 0% to 30%.

Predictive models of ultimate and serviceability performances for underground twin caverns

  • Zhang, Wengang;Goh, Anthony T.C.
    • Geomechanics and Engineering
    • /
    • 제10권2호
    • /
    • pp.175-188
    • /
    • 2016
  • The construction of a new cavern modifies the state of stresses and displacements in a zone around the existing cavern. For multiple caverns, the size of this influence zone depends on the ground type, the in situ stress, the cavern span and shape, the width of the pillar separating the caverns, and the excavation sequence. Performances of underground twin caverns can be unsatisfactory as a result of either instability (collapse) or excessive displacements. These two distinct failures should be prevented in design. This study simulated the ultimate and serviceability performances of underground twin rock caverns of various sizes and shapes. The global factor of safety is used as the criterion for determining the ultimate limit state and the calculated maximum displacement around the cavern opening is adopted as the serviceability limit state criterion. Based on the results of a series of numerical simulations, simple regression models were developed for estimating the global factor of safety and the maximum displacement, respectively. It was proposed that a proper pillar width can be determined based on the threshold influence factor value. In addition, design charts with regard to the selection of the pillar width for underground twin rock caverns under similar ground conditions were also developed.

Numerical analysis of the Influence of the presence of disbond region in adhesive layer on the stress intensity factors (SIF) and crack opening displacement (COD) in plates repaired with a composite patch

  • Benchiha, Aicha;Madani, Kouider;Touzain, Sebastien;Feaugas, Xavier;Ratwani, Mohan
    • Steel and Composite Structures
    • /
    • 제20권4호
    • /
    • pp.951-962
    • /
    • 2016
  • The determination of the stress intensity factor at the crack tip is one of the most widely used methods to predict the fatigue life of aircraft structures. This prediction is more complicated for repaired cracks with bonded composite patch. This study is used to compute the stress intensity factor (SIF) and crack opening displacement (COD) for cracks repaired with single and double-sided composite patches. The effect of the presence of disbond region in adhesive at the crack was taken into consideration. The results show that there is a considerable reduction in the asymptotic value of the stress-intensity factors and the crack opening displacement at the crack tip. The use of a double-sided patch suppresses the bending effect due to the eccentricity of the patch on one side only.

연직배수재가 설치된 연약지반 상에 도로성토로 인한 측방유동 발생 예측 (Prediction of Lateral Flow due to Embankments for Road Construction on Soft Grounds with Vertical Drains)

  • 홍원표;김정훈
    • 대한토목학회논문집
    • /
    • 제32권6C호
    • /
    • pp.239-247
    • /
    • 2012
  • 연직배수재가 설치된 연약지반 상에 도로성토를 실시할 경우 연약지반에 측방유동이 발생될 지 여부를 예측할 수 있는 방법이 제안되었다. 이 측방유동예측법을 조사하기위해 연직배수공법을 적용하여 지반개량공사가 실시된 연약지반 상에 도로성토가 시공된 우리나라 서해안과 남해안 지역 연약지반에서 계측관리가 실시된 13개 현장 200개 측점의 현장계측자료를 수집 분석하였다. 수평배수재를 설치한 연약지반에서 수평변위와 사면안전율과의 관계를 조사할 경우는 연약지반의 지표면수평변위량 보다는 지중최대수평변위량을 적용하는 것이 바람직하였다. 성토사면의 사면안전율이 1.4 이상이면 대부분의 연약지반 최대수평변위는 50mm 이하로 발생되었고 사면안전율이 1.2 이하이면 대부분의 최대수평변위는 100mm 이상으로 발생되었다. 최대수평변위량이 50mm 이하로 발생하면 전단변형이 발생하지 않았으므로 측방유동이 발생할 우려가 없는 안전한 현장으로 판단된다. 반면에 최대수평변위량이 100mm 이상으로 크게 발생하는 현장에서는 전단파괴가 발생할 가능성이 있다고 판단된다. 이런 현장에서는 즉각 대책을 강구한 후 성토를 계속함이 바람직하다고 판단된다. 또한 연직배수재를 설치한 연약지반에서 안정수가 3.0이하이고 지지안전율이 1.7 이상이면 안전한 성토시공이 가능하며 안정수가 4.3 이상이고 지지안전율이 1.2 이하이면 연약지반에 전단변형의 발생은 물론이고 전단파괴의 가능성까지도 예상된다.

지진하중을 받는 철근콘크리트 교각의 연성도 상관관계 (Ductility Relationship of RC Bridge Columns under Seismic Loading)

  • 손혁수;이재훈
    • 한국지진공학회논문집
    • /
    • 제7권4호
    • /
    • pp.51-61
    • /
    • 2003
  • 본 연구는 철근콘크리트 교각에 대한 새로운 내진설계법을 개발하기 위한 연구의 일환으로서, 축력과 함께 반복 횡하증을 받는 철근콘크리트 교각의 곡률연성도와 변위연성도의 상관관계를 분석하고 연성도 상관관계식을 제시함을 목적으로 한다. 이를 위하여, 반복하중을 받는 철근콘크리트 기둥의 횡하중-변위 포락곡선 실험결과를 비교적 정확하게 예측하며, 특히 변형능력 및 연성도에 대하여는 실험결과에 비하여 안전측의 결과를 제공하는 비선형해석 프로그램(NARCC)를 이용하였다. 해석의 대상 교각으로는, 단면지름, 형상비, 콘크리트 강도, 축방향철근 항복강도, 심부구속철근 항복강도, 축방향철근비, 축력비, 심부구속철근비 등을 주요변수로 하여, 총 7,200개의 철근콘크리트 나선철근 기둥 모델을 채택하였으며, 세 가지 항복변위의 기준을 적용하여 총 21,600개의 해석결과자료를 대상으로 상관관계를 분석하여 형상비를 주요변수로 한 곡률연성도와 변위연성도의 상관관계식을 제안하였다.