• Title/Summary/Keyword: displacement based analysis

Search Result 1,837, Processing Time 0.034 seconds

Mechanical Performance Study of Flexible Protection Tube for Submarine Cables (해저케이블용 유연보호튜브의 기계적 성능 연구)

  • Kyeong Soo Ahn;Yun Jae Kim;Jin-wook Choe;Jinseok Lim;Sung Woong Choi
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.101-107
    • /
    • 2024
  • Demand for submarine cable is increasing due to advances in submarine power transmission technology and submarine cable manufacturing technology. Submarine cable use various types of protective equipment to prevent problems such as high maintenance costs in the event of cable damage and power outages during maintenance periods. Among them, flexible protection tube is a representative protective equipment to protect cables and respond to external forces such as waves and current. The flexible protection tube is made of polyurethane 85A hyperelastic material, so the calculation of mechanical behavior is carried out using mechanical properties based on experimental results. In this study, a study was conducted to determine the bending performance and tensile performance of flexible protection tube through analytical methods. The physical properties obtained through the multiaxial tensile test of polyurethane 85A were used for the analysis. Bending and tensile performance were determined for the maximum bending moment standard of 15 kN·m and the tensile load standard of 50 kN. As a result, it was confirmed that when the maximum bending moment of 15 kN·m of the flexible protection tube occurred, the bending performance of the MBR was secured at 13 m and when a tensile load of 50 kN, it was applied the maximum vertical displacement was 968 mm, confirming that the tensile performance was secured.

Shear strain behaviour due to twin tunnelling adjacent to pile group (군말뚝 기초 하부 병렬터널 굴착 시 전단변형 거동 특성)

  • Subin Kim;Young-Seok Oh;Yong-Joo Lee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.1
    • /
    • pp.59-78
    • /
    • 2024
  • In tunnel construction, the stability is evaluated by the settlement of adjacent structures and ground, but the shear strain of the ground is the main factor that determines the failure mechanism of the ground due to the tunnel excavation and the change of the operating load, and can be used to review the stability of the tunnel excavation and to calculate the reinforcement area. In this study, a twin tunnel excavation was simulated on a soft ground in an urban area through a laboratory model test to analyze the behavior of the twin tunnel excavation on the adjacent pile grouped foundation and adjacent ground. Both the displacement and the shear strain of ground were obtained using a close-range photogrammetry during laboratory model test. In addition, two-dimensional finite element numerical analysis was performed based on the model test. The results of a back-analysis showed that the maximum shear strain rate tends to decrease as the horizontal distance between the pillars of the twin tunnel and the vertical distance between the toe of the pile group and the crown of the tunnel were decreased. The impact of the second tunnel on the first tunnel and pile group was decreased as the horizontal distance between the pillars of the twin tunnel was increased. In addition, the vertical distance between the toe of the pile group and the crown of the tunnel had a relatively greater impact on the shear strain results than the horizontal distance of the pillars between the twin tunnels. According to the results of the close-range photogrammetry and numerical analysis, the settlement of adjacent pile group and adjacent ground was measured within the design criteria, but the shear strain of the ground was judged to be outside the range of small strain in all cases and required reinforcement.

Cephalometric Characteristics of TMD Patients based on RDC/TMD Axis I Diagnosis (RDC/TMD Axis I 진단에 따른 측두하악장애 환자의 측두 두부방사선적 특징에 관한 연구)

  • Ahn, Ji-Yeon;Kim, Yong-Woo;Kim, Young-Ku;Lee, Jeong-Yun
    • Journal of Oral Medicine and Pain
    • /
    • v.36 no.1
    • /
    • pp.39-51
    • /
    • 2011
  • The aims of this study were to investigate whether the facial skeletal patterns previously reported to be related to temporomandibular disorder (TMD) in other studies could be consistently observed in the TMD patients diagnosed according to Research Diagnostic Criteria for Temporomandibular Disorder (RDC/TMD) Axis I and evaluate its usability in the orthodontic clinics to examine the patients with TMD related symptoms. The clinical records and radiographs of female patients who visited the TMD and Orofacial Pain Clinic of Seoul National University Dental Hospital and were diagnosed as TMD were consecutively filed for this study. Patients were clinically examined and diagnosed according to the revised diagnostic algorithms of RDC/TMD Axis I and the lateral cephalogram, panoramic orthopantomogram, temporomandibular joint (TMJ) orthopantomogram, and transcranial radiograph of each patient were taken and digitalized. The data of patients who were under 18 years of age or had any systemic disease, trauma history involving the TMJ, or skeletal deformity at the time of the first examination were excluded. The remaining data of 96 female patients were finally analyzed. The obtained results were as follows: 1. There are no significant differences of cephalometric measurements between RDC I (muscle disorders) diagnostic groups. 2. Only the articular angle of the RDC group IIc (disk displacement without reduction without limited opening) patients was larger than patients of the no diagnosis of RDC II group (disk displacement). 3. Larger articular angle and smaller facial height ratio were observed in RDC IIIc group (osteoarthrosis) compared to IIIa group (arthralgia). Larger articular angle, larger Bjork sum, smaller posterior facial height, and smaller facial height ratio were observed in RDC group IIIc compared to no diagnosis of RDC III group (arthralgia, arthritis, and arthrosis). 4. According to the results of cephalometric analysis in simplified RDC groups, smaller overjet was observed in muscle disorders (MD) group. Facial height ratio and IMPA were smaller and articular angle was larger in disk displacements (DD) group than in no diagnosis of DD group. In arthrosis (AR) group, posterior facial height, and facial height ratio were smaller, and articular angle, gonial angle, facial convexity, FMA, Bjork sum, and ANB were larger than in no diagnosis of AR group. In joint pain (JP) group, only posterior facial height was smaller than no diagnosis of JP group. In conclusion, Facial morphologic patterns showing posterior-rotated mandible and lower posterior facial height is related to RDC group II and III diagnosis of the TMJ in female TMD patients. RDC/TMD Axis I diagnosis can provide a good clinical diagnostic tool for the standardized examination of the TMJ in orthodontic clinics.

Assessment of Carsington Dam Failure by Slope Stability and Dam Behavior Analyses (사면안정 해석과 댐 거동분석을 통한 Carsington Dam 파괴의 고찰)

  • 송정락;김성인
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.87-102
    • /
    • 1991
  • It has been reported that the failure of Carsington Dam in Eng1and occured due to the existence of a thin yellow clay layer which was not identified during the design work, and due to pre-existing shears of the clay layer. The slope stability analyses during the design work, which utilized traditional circular arc type failure method and neglected the existence of the clay layer, showed a safety factor of 1.4. However, the post-failure analyses which utilized translational failure mode considering the clay layer and the pre-existing shear deformation revealed the reduction of safety factor to unity. The post-failure analysis assumed 10。 inclination of the horizontal forces onto each slice based on the results of finite element analyses. In this paper, Bishop's simplified method, Janbu method, and Morgenstern-Price method were used for the comparison of both circular and translational failure analysis methods. The effects of the pre-existing shears and subsquent movement were also considered by varying the soil strength parameters and the pore pressure ratio according to the given soi1 parameters. The results showed factor of safefy 1.387 by Bishop's simplified method(STABL) which assumed circular arc failure surface and disregarding yellow clay layer and pre-failure material properties. Also the results showed factor of safety 1.093 by Janbu method(STABL) and 0.969 by Morgenstern-Price method(MALE) which assumed wedge failure surface and considerd yellow clay layer using post failure material properties. In addition, dam behavior was simulated by Cam-Clay model FEM program. The effects of pore pressure changes with loading and consolidation, and strength reduction near or at failure were also considered based on properly assumed stress-strain relationship and pore pressure characteristics. The results showed that the failure was initiated at the yellow clay layer and propagated through other zones by showing that stress and displacement were concentrated at the yel1ow clay layer.

  • PDF

Analysis of Tidal Deflection and Ice Properties of Ross Ice Shelf, Antarctica, by using DDInSAR Imagery (DDInSAR 영상을 이용한 남극 로스 빙붕의 조위변형과 물성 분석)

  • Han, Soojeong;Han, Hyangsun;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.933-944
    • /
    • 2019
  • This study analyzes the tide deformation of land boundary regions on the east (Region A) and west (Region B) sides of the Ross Ice Shelf in Antarctica using Double-Differential Interferometric Synthetic Aperture Radar (DDInSAR). A total of seven Sentinel-1A SAR images acquired in 2015-2016 were used to estimate the accuracy of tide prediction model and Young's modulus of ice shelf. First, we compared the Ross Sea Height-based Tidal Inverse (Ross_Inv) model, which is a representative tide prediction model for the Antarctic Ross Sea, with the tide deformation of the ice shelf extracted from the DDInSAR image. The accuracy was analyzed as 3.86 cm in the east region of Ross Ice Shelf and it was confirmed that the inverse barometric pressure effect must be corrected in the tide model. However, in the east, it is confirmed that the tide model may be inaccurate because a large error occurs even after correction of the atmospheric effect. In addition, the Young's modulus of the ice was calculated on the basis of the one-dimensional elastic beam model showing the correlation between the width of the hinge zone where the tide strain occurs and the ice thickness. For this purpose, the grounding line is defined as the line where the displacement caused by the tide appears in the DDInSAR image, and the hinge line is defined as the line to have the local maximum/minimum deformation, and the hinge zone as the area between the two lines. According to the one-dimensional elastic beam model assuming a semi-infinite plane, the width of the hinge region is directly proportional to the 0.75 power of the ice thickness. The width of the hinge zone was measured in the area where the ground line and the hinge line were close to the straight line shown in DDInSAR. The linear regression analysis with the 0.75 power of BEDMAP2 ice thickness estimated the Young's modulus of 1.77±0.73 GPa in the east and west of the Ross Ice Shelf. In this way, more accurate Young's modulus can be estimated by accumulating Sentinel-1 images in the future.

Correlation Analysis between Damage of Expansion Joints and Response of Deck in RC Slab Bridges (RC 슬래브교의 신축이음 손상과 바닥판 응답과의 상관관계 분석)

  • Jung, Hyun-Jin;An, Hyo-Joon;Park, Ki-Tae;Jung, Kyu-San;Kim, Yu-Hee;Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.245-253
    • /
    • 2021
  • RC slab bridges account for the largest portion of deteriorated bridges in Korea. However, most RC slabs are not included in the first and second classes of bridges, which are subject to bridge safety management and maintenance. The highest damaged components in highway bridges are the subsidiary facilities including expansion joints and bearings. In particular, leakage through expansion joints causes deterioration and cracks of concrete and exposure of reinforced bars. Therefore, this study analyzed the effect of adhesion damage at expansion joints on the response of the deck in RC slab bridges. When the spacing between the expansion joints at both ends was closely adhered, cracks occurred in the concrete at both ends of the deck due to the resistance rigidity at the expansion joints. Based on the response results, the correlation analysis between displacements in the longitudinal direction of the expansion joint and concrete stress at both ends of the deck for each damage scenario was performed to investigate the effect of the occurrence of damage on the bridge behavior. When expansion joint devices at both sides were damaged, the correlation between displacement and stress showed a low correlation of 0.18 when the vehicles proceeded along all the lanes. Compared with those in the intact state, the deflections of the deck in the damaged case at both sides showed a low correlation of 0.34 to 0.53 while the vehicle passed and 0.17 to 0.43 after the vehicle passed. This means that the occurrence of cracks in the ends of concrete changed the behavior of the deck. Therefore, data-deriven damage detection could be developed to manage the damage to expansion joints that cause damage and deterioration of the deck.

Analysis of Landslide Occurrence Characteristics Based on the Root Cohesion of Vegetation and Flow Direction of Surface Runoff: A Case Study of Landslides in Jecheon-si, Chungcheongbuk-do, South Korea (식생의 뿌리 점착력과 지표유출의 흐름 조건을 고려한 산사태의 발생 특성 분석: 충청북도 제천지역의 사례를 중심으로)

  • Jae-Uk Lee;Yong-Chan Cho;Sukwoo Kim;Minseok Kim;Hyun-Joo Oh
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.4
    • /
    • pp.426-441
    • /
    • 2023
  • This study investigated the predictive accuracy of a model of landslide displacement in Jecheon-si, where a great number of landslides were triggered by heavy rain on both natural (non-clear-cut) and clear-cut slopes during August 2020. This was accomplished by applying three flow direction methods (single flow direction, SFD; multiple flow direction, MFD; infinite flow direction, IFD) and the degree of root cohesion to an infinite slope stability equation. The application assumed that the soil saturation and any changes in root cohesion occurred following the timber harvest (clear-cutting). In the study area, 830 landslide locations were identified via landslide inventory mapping from satellite images and 25 cm resolution aerial photographs. The results of the landslide modeling comparison showed the accuracy of the models that considered changes in the root cohesion following clear-cutting to be improved by 1.3% to 2.6% when compared with those not considered in the area under the receiver operating characteristics (AUROC) analysis. Furthermore, the accuracy of the models that used the MFD algorithm improved by up to 1.3% when compared with the models that used the other algorithms in the AUROC analysis. These results suggest that the discriminatory application of the root cohesion, which considers changes in the vegetation condition, and the selection of the flow direction method may influence the accuracy of landslide predictive modeling. In the future, the results of this study should be verified by examining the root cohesion and its dynamic changes according to the tree species using the field hydrological monitoring technique.

A Theoretical Model for the Analysis of Residual Motion Artifacts in 4D CT Scans (이론적 모델을 이용한 4DCT에서의 Motion Artifact 분석)

  • Kim, Tae-Ho;Yoon, Jai-Woong;Kang, Seong-Hee;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.3
    • /
    • pp.145-153
    • /
    • 2012
  • In this study, we quantify the residual motion artifact in 4D-CT scan using the dynamic lung phantom which could simulate respiratory target motion and suggest a simple one-dimension theoretical model to explain and characterize the source of motion artifacts in 4DCT scanning. We set-up regular 1D sine motion and adjusted three level of amplitude (10, 20, 30 mm) with fixed period (4s). The 4DCT scans are acquired in helical mode and phase information provided by the belt type respiratory monitoring system. The images were sorted into ten phase bins ranging from 0% to 90%. The reconstructed images were subsequently imported into the Treatment Planning System (CorePLAN, SC&J) for target delineation using a fixed contour window and dimensions of the three targets are measured along the direction of motion. Target dimension of each phase image have same changing trend. The error is minimum at 50% phase in all case (10, 20, 30 mm) and we found that ${\Delta}S$ (target dimension change) of 10, 20 and 30 mm amplitude were 0 (0%), 0.1 (5%), 0.1 (5%) cm respectively compare to the static image of target diameter (2 cm). while the error is maximum at 30% and 80% phase ${\Delta}S$ of 10, 20 and 30 mm amplitude were 0.2 (10%), 0.7 (35%), 0.9 (45%) cm respectively. Based on these result, we try to analysis the residual motion artifact in 4D-CT scan using a simple one-dimension theoretical model and also we developed a simulation program. Our results explain the effect of residual motion on each phase target displacement and also shown that residual motion artifact was affected that the target velocity at each phase. In this study, we focus on provides a more intuitive understanding about the residual motion artifact and try to explain the relationship motion parameters of the scanner, treatment couch and tumor. In conclusion, our results could help to decide the appropriate reconstruction phase and CT parameters which reduce the residual motion artifact in 4DCT.

A Study on Setup for Preliminary Decision Criterion of Continuum Rock Mass Slope with Fair to Good Rating (양호한 연속체 암반사면의 예비 판정기준 설정 연구)

  • Kim, Hyung-Min;Lee, Su-gon;Lee, Byok-Kyu;Woo, Jae-Gyung
    • The Journal of Engineering Geology
    • /
    • v.29 no.2
    • /
    • pp.85-97
    • /
    • 2019
  • It can be observed that steep slopes ($65^{\circ}$ to $80^{\circ}$) consist of rock masses were kept stable for a long time. In rock-mass slopes with similar ground condition, steeper slopes than 1 : 0.5 ($63^{\circ}$) may be applied if the discontinuities of rock-mass slope are distributed in a direction favorable to the stability of the slope. In making a decision the angle of the slope, if the preliminary rock mass conditions applicable to steep slope are quantitatively setup, they may be used as guidance in design practice. In this study, the above rock mass was defined as a good continuum rock mass and the quantitative setup criterion range was proposed using RMR, SMR and GSI classifications for the purpose of providing engineering standard for good continuum rock mass conditions. The methods of study are as follows. The stable slope at steep slopes ($65^{\circ}$ to $80^{\circ}$) for each rock type was selected as the study area, and RMR, SMR and GSI were classified to reflect the face mapping results. The results were reviewed by applying the calculated shear strength to the stable analysis of the current state of rock mass slope using the Hoek-Brown failure criterion. It is intended to verify the validity of the preliminary criterion as a rock mass condition that remains stable on a steep slope. Based on the analysis and review by the above research method, it was analyzed that a good continuum rock mass slope can be set to Basic RMR ${\geq}50$ (45 in sedimentary rock), GSI and SMR ${\geq}45$. The safety factor of the LEM is between Fs = 14.08 and 67.50 (average 32.9), and the displacement of the FEM is 0.13 to 0.64 mm (average 0.27 mm). This can be seen as a result of quantitative representation and verification of the stability of a good continuum rock mass slope that has been maintained stable for a long period of time with steep slopes ($65^{\circ}$ to $80^{\circ}$). The setup guideline for a good continuum rock mass slope will be able to establish a more detailed setup standard when the data are accumulated, and it is also a further study project. If stable even on steep slopes of 1 : 0.1 to 0.3, the upper limit of steep slopes is 1 : 0.3 with reference to the overseas design standards and report, thus giving the benefit of ensuring economic and eco-friendlyness. Also, the development of excavation technology and plantation technology and various eco-friendly slope design techniques will help overcome psychological anxiety and rapid weathering and relaxation due to steep slope construction.

An accuracy analysis of Cyberknife tumor tracking radiotherapy according to unpredictable change of respiration (예측 불가능한 호흡 변화에 따른 사이버나이프 종양 추적 방사선 치료의 정확도 분석)

  • Seo, jung min;Lee, chang yeol;Huh, hyun do;Kim, wan sun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.2
    • /
    • pp.157-166
    • /
    • 2015
  • Purpose : Cyber-Knife tumor tracking system, based on the correlation relationship between the position of a tumor which moves in response to the real time respiratory cycle signal and respiration was obtained by the LED marker attached to the outside of the patient, the location of the tumor to predict in advance, the movement of the tumor in synchronization with the therapeutic device to track real-time tumor, is a system for treating. The purpose of this study, in the cyber knife tumor tracking radiation therapy, trying to evaluate the accuracy of tumor tracking radiation therapy system due to the change in the form of unpredictable sudden breathing due to cough and sleep. Materials and Methods : Breathing Log files that were used in the study, based on the Respiratory gating radiotherapy and Cyber-knife tracking radiosurgery breathing Log files of patients who received herein, measured using the Log files in the form of a Sinusoidal pattern and Sudden change pattern. it has been reconstituted as possible. Enter the reconstructed respiratory Log file cyber knife dynamic chest Phantom, so that it is possible to implement a motion due to respiration, add manufacturing the driving apparatus of the existing dynamic chest Phantom, Phantom the form of respiration we have developed a program that can be applied to. Movement of the phantom inside the target (Ball cube target) was driven by the displacement of three sizes of according to the size of the respiratory vertical (Superior-Inferior) direction to the 5 mm, 10 mm, 20 mm. Insert crosses two EBT3 films in phantom inside the target in response to changes in the target movement, the End-to-End (E2E) test provided in Cyber-Knife manufacturer depending on the form of the breathing five times each. It was determined by carrying. Accuracy of tumor tracking system is indicated by the target error by analyzing the inserted film, additional E2E test is analyzed by measuring the correlation error while being advanced. Results : If the target error is a sine curve breathing form, the size of the target of the movement is in response to the 5 mm, 10 mm, 20 mm, respectively, of the average $1.14{\pm}0.13mm$, $1.05{\pm}0.20mm$, with $2.37{\pm}0.17mm$, suddenly for it is variations in breathing, respective average $1.87{\pm}0.19mm$, $2.15{\pm}0.21mm$, and analyzed with $2.44{\pm}0.26mm$. If the correlation error can be defined by the length of the displacement vector in the target track is a sinusoidal breathing mode, the size of the target of the movement in response to 5 mm, 10 mm, 20 mm, respective average $0.84{\pm}0.01mm$, $0.70{\pm}0.13mm$, with $1.63{\pm}0.10mm$, if it is a variant of sudden breathing respective average $0.97{\pm}0.06mm$, $1.44{\pm}0.11mm$, and analyzed with $1.98{\pm}0.10mm$. The larger the correlation error values in both the both the respiratory form, the target error value is large. If the motion size of the target of the sine curve breathing form is greater than or equal to 20 mm, was measured at 1.5 mm or more is a recommendation value of both cyber knife manufacturer of both error value. Conclusion : There is a tendency that the correlation error value between about target error value magnitude of the target motion is large is increased, the error value becomes large in variation of rapid respiration than breathing the form of a sine curve. The more the shape of the breathing large movements regular shape of sine curves target accuracy of the tumor tracking system can be judged to be reduced. Using the algorithm of Cyber-Knife tumor tracking system, when there is a change in the sudden unpredictable respiratory due patient coughing during treatment enforcement is to stop the treatment, it is assumed to carry out the internal target validation process again, it is necessary to readjust the form of respiration. Patients under treatment is determined to be able to improve the treatment of accuracy to induce the observed form of regular breathing and put like to see the goggles monitor capable of the respiratory form of the person.

  • PDF