• Title/Summary/Keyword: dispersive

Search Result 1,825, Processing Time 0.025 seconds

Performance Analysis of GNSS Residual Error Bounding for QZSS CLAS

  • Yebin Lee;Cheolsoon Lim;Yunho Cha;Byungwoon Park;Sul Gee Park;Sang Hyun Park
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.215-228
    • /
    • 2023
  • The State Space Representation (SSR) method provides individual corrections for each Global Navigation Satellite System (GNSS) error components. This method can lead to less bandwidth for transmission and allows selective use of each correction. Precise Point Positioning (PPP) - Real-Time Kinematic (RTK) is one of the carrier-based precise positioning techniques using SSR correction. This technique enables high-precision positioning with a fast convergence time by providing atmospheric correction as well as satellite orbit and clock correction. Currently, the positioning service that supports PPP-RTK technology is the Quazi-Zenith Satellite System Centimeter Level Augmentation System (QZSS CLAS) in Japan. A system that provides correction for each GNSS error component, such as QZSS CLAS, requires monitoring of each error component to provide reliable correction and integrity information to the user. In this study, we conducted an analysis of the performance of residual error bounding for each error component. To assess this performance, we utilized the correction and quality indicators provided by QZSS CLAS. Performance analyses included the range domain, dispersive part, non-dispersive part, and satellite orbit/clock part. The residual root mean square (RMS) of CLAS correction for the range domain approximated 0.0369 m, and the residual RMS for both dispersive and non-dispersive components is around 0.0363 m. It has also been confirmed that the residual errors are properly bounded by the integrity parameters. However, the satellite orbit and clock part have a larger residual of about 0.6508 m, and it was confirmed that this residual was not bounded by the integrity parameters. Users who rely solely on satellite orbit and clock correction, particularly maritime users, thus should exercise caution when utilizing QZSS CLAS.

An experimental investigation on dispersion and geotechnical properties of dispersive clay soil stabilized with Metakaolin and Zeolite

  • Ahmadreza Soltanian;Amirali Zad;Maryam Yazdib;Amin Tohidic
    • Geomechanics and Engineering
    • /
    • v.36 no.6
    • /
    • pp.589-599
    • /
    • 2024
  • Dispersion occurs when clay soil disperses under specific conditions and is rapidly washed away. While there are numerous methods for rectifying it, they are neither cost nor time-effective. The current study used metakaolin and zeolite to improve heavily dispersive clay soil either separately or in combination at 0%, 2%, 4%, 6%, and 8% of the soil weight. After 7 days of curing, the samples were tested to determine the extent of change in the dispersion potential, as well as the improvement of the geotechnical properties of the soil. The results indicated that the addition of 2% zeolite with 6% to 8% metakaolin decreased the dispersion potential considerably. Double hydrometry test findings revealed that the dispersion potential decreased by almost 70% and entered the non-dispersive group; the crumb test also revealed this. Atterberg limits testing indicated a decrease in the plasticity index which reduced the flexibility of the samples. The greatest decrease in PI (67.5%) was achieved with the addition of 8% zeolite plus 8% metakaolin to the soil. The results of density tests revealed that a decrease in the optimal moisture content increased the maximum dry density of soil. This increase in density was a response to the high reactivity of metakaolin with calcium hydroxide and the formation of calcium hydroxide hydrate gel. This eventually caused an increase in the unconfined compressive strength, the greatest increase in strength of about 1.8-fold was observed with a combination of 2% zeolite and 6% metakaolin compared to the unmodified sample.

Highly dispersive substitution box (S-box) design using chaos

  • Faheem, Zaid Bin;Ali, Asim;Khan, Muhamad Asif;Ul-Haq, Muhammad Ehatisham;Ahmad, Waqar
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.619-632
    • /
    • 2020
  • Highly dispersive S-boxes are desirable in cryptosystems as nonlinear confusion sublayers for resisting modern attacks. For a near optimal cryptosystem resistant to modern cryptanalysis, a highly nonlinear and low differential probability (DP) value is required. We propose a method based on a piecewise linear chaotic map (PWLCM) with optimization conditions. Thus, the linear propagation of information in a cryptosystem appearing as a high DP during differential cryptanalysis of an S-box is minimized. While mapping from the chaotic trajectory to integer domain, a randomness test is performed that justifies the nonlinear behavior of the highly dispersive and nonlinear chaotic S-box. The proposed scheme is vetted using well-established cryptographic performance criteria. The proposed S-box meets the cryptographic performance criteria and further minimizes the differential propagation justified by the low DP value. The suitability of the proposed S-box is also tested using an image encryption algorithm. Results show that the proposed S-box as a confusion component entails a high level of security and improves resistance against all known attacks.

Ultra-trace Arsenic Determination in Urine and Whole Blood Samples by Flow Injection-Hydride Generation Atomic Absorption Spectrometry after Preconcentration and Speciation Based on Dispersive Liquid-Liquid Microextraction

  • Shirkhanloo, Hamid;Rouhollahi, Ahmad;Mousavi, Hassan Zavvar
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3923-3927
    • /
    • 2011
  • A noble method for pre-concentration and speciation of ultra trace As (III) and As (V) in urine and whole blood samples based on dispersive liquid-liquid microextraction (DLLME) has been developed. In this method, As (III) was complexed with ammonium pyrrolidine dithiocarbamate at pH = 4 and Then, As (III) was extracted into the ionic liquid (IL). Finally, As (III) was back-extracted from the IL with hydrochloric acid (HCl) and its concentration was determined by flow injection coupled with hydride generation atomic absorption spectrometry (FI-HGAAS). Total amount of arsenic was determined by reducing As (V) to As (III) with potassium iodide (KI) and ascorbic acid in HCl solution and then, As (V) was calculated by the subtracting the total arsenic and As (III) content. Under the optimum conditions, for 5-15 mL of blood and urine samples, the detection limit ($3{\sigma}$) and linear range were achieved 5 ng $L^{-1}$ and 0.02-10 ${\mu}g\;L^{-1}$, respectively. The method was applied successfully to the speciation and determination of As (III) and As (V) in biological samples of multiple sclerosis patients with suitable precision results (RSD < 5%). Validation of the methodology was performed by the standard reference material (CRM).

Analysis of Output Voltage Properties of Non-dispersive Infrared Gas Sensors According to Ambient Temperatures (주변 온도 영향에 따른 비분산 적외선 가스센서의 출력 특성 해석)

  • Park, Han-Gil;Yi, Seung-Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.294-299
    • /
    • 2018
  • This article describes the output properties of non-dispersive infrared carbon dioxide($CO_2$) sensors resulting from the changes in ambient temperatures. After the developed sensor module was installed inside the gas chamber, the temperature was set to 267 K, 277 K, 300 K, and 314 K, and the concentrations of $CO_2$ gas were increased from 0 to 5,000 ppm. Then, the output voltage at each concentration was obtained. Through these experimental results, two observations were made. First, both the $CO_2$ sensor and the reference sensor showed an increase in the output voltages as the temperature rose from 0 ppm, Second, the full scale outputs of the $CO_2$ sensor grew as the temperature increased. The output characteristics were analyzed based on two factors: change in the radiant energy of the infrared light source and change in the absorptivity of $CO_2$ gas according to the ambient temperature. Additionally, temperature compensation methods were discussed.

Development of advanced phase spectrum for surface wave method (표면파 시험을 위한 향상된 위상각 스펙트럼 결정방법의 개발)

  • Park, Hyung-Choon;Joh, Seung-Eun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.599-604
    • /
    • 2008
  • The dispersive phase velocity of a wave propagating through a system is an important parameter and carries valuable information in non-destructive tests related to multilayered systems such as a soil site. The dispersive phase velocity of a wave can be determined using the phase spectrum, which is easily evaluated through the cross power spectrum. However, the phase spectrum as determined using the cross power spectrum is sensitive to background noise which always exists in the field. This causes difficulties in the determination of the dispersive phase velocities. In this paper, a new method to evaluate the phase spectrum using the harmonic wavelet transform is proposed. The proposed method can successfully remove background noise effects. To evaluate the validity of the proposed method, numerical simulations of multi-layered systems were performed. Phase spectrums by the proposed method were found to be in good agreement with the actual phase spectrums under conditions characterized by heavy background noise. This shows the potential of the proposed method.

  • PDF

Optimal Dispersion Condition to Distinguish OPD Directions of Spectrally-Resolved Interferometry (방향 판별 분산간섭계의 최적 분산 조건 연구)

  • Yun, Young Ho;Kim, Dae Hee;Joo, Ki-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.4
    • /
    • pp.259-264
    • /
    • 2017
  • Spectrally resolved interferometry (SRI) is an attractive technique to measure absolute distances without any moving components. In the spectral interferogram obtained by a spectrometer, the optical path difference (OPD) can simply be extracted from the linear slope of the spectral phase. However, SRI has a fundamental measuring range limitation due to maximum and minimum measurable distances. In addition, SRI cannot distinguish the OPD direction because the spectral interferogram is in the form of a natural sinusoidal function. In this investigation, we describe a direction determining SRI and propose the optimal conditions for determining OPD direction. Spectral phase nonlinearity, caused by a dispersive material, effects OPD direction but deteriorates spectral interferogram visibility. In the experiment, various phase nonlinearities were measured by adjusting the dispersive material (BK7) thickness. We observed the interferogram visibility and the possibility of direction determination. Based on the experimental results, the optimal dispersion conditions are provided to distinguish OPD directions of SRI.

Aqueous Glucose Solution Measurement by Three Types NIR Spectrometer (세 가지 방식의 근적외선 분광분석기를 이용한 글루코오스 수용액의 측정)

  • 백주현;강나루;우영아;김효진
    • YAKHAK HOEJI
    • /
    • v.47 no.6
    • /
    • pp.461-468
    • /
    • 2003
  • A method is described for measuring clinically relevant levels of glucose in a pH 7.4 phosphate buffer by nearinfrared (NIR) absorption spectroscopy. Three types of NIR spectrometer, dispersive type, photo-diode array (PDA) type, and fourier transform (FT) type spectrometer were used and the performance was compared. Spectra were collected with a cuvette cell or quartz liquid fiber of 1 mm or 2 mm optical pathlength as transmittance method. Glucose absorption band appeared at second overtone, first overtone, and combination region for all systems. By use of the multivariate technigue of partial least squares (PLS) regression, glucose concentrations can be determined with a 16, 44, and 9.1 mg/d l standard error of prediction for dispersive type, photo-diode array type, and fourier transform type system, respectively. Sensitivity of spectrometer was evaluated by absorbance for the difference of 10 mg/d l glucose. Three absorption bands, second overtone, first overtone, and combination region were suited to three types systems, dispersive type, photo-diode array type, and fourier transform type systems, respectively. This investigation showed that three types NIR spectrometer were proper method for identification and quantitative analysis of glucose and possible for noninvasive blood glucose monitoring.

Non-dispersive infrared carbon dioxide sensor with an externally exposed optical cavity (광 도파관이 외부로 노출된 구조를 가지는 비분산적외선 이산화탄소 센서)

  • Jung, Dong Geon;Lee, Junyeop;Do, Nam Gon;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.456-460
    • /
    • 2021
  • In this study, a Non-Dispersive Infrared (NDIR) Carbon Dioxide (CO2) sensor with an externally exposed optical cavity is proposed for improving sensitivity. NDIR CO2 sensors with high performance must use a lamp-type infrared (IR) source with a strong IR intensity. However, a lamp-type IR source generates high thermal energy that induces thermal noise, interfering with the accuracy of the CO2 concentration measure. To solve this problem, the optical cavity of the NDIR CO2 sensor is exposed to quickly dissipate heat. As a result, the proposed NDIR CO2 sensor has a shorter warm-up time and a higher sensitivity compared to the conventional NDIR CO2 sensor.