• Title/Summary/Keyword: dispersion property

Search Result 338, Processing Time 0.025 seconds

Physicochemical and Rheological Properties of a Novel Emulsifier, EPS-R, Produced by the Marine Bacterium Hahella chejuensis

  • Yim Joung Han;Kim Sung Jin;Aan Se Hoon;Lee Hong Kum
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.5
    • /
    • pp.405-413
    • /
    • 2004
  • The rheological properties of an exopolysaccharide, EPS-R, produced by the marine bacterium Hahella chejuensis strain 96CJ 10356 were investigated. The $E_{24}$ of $0.5\%$ EPS-R was $89.2\%$, which was higher than that observed in commercial polysaccharides such as xanthan gum ($67.8\%$), gellan gum ($2.01\%$) or sodium alginate ($1.02\%$). Glucose and galactose are the main Sugars in EPS-R, with a molar ratio of ${\~}1:6.8$, xylose and ribose are minor sugar components. The average molecular mass, as determined by gel filtration chromatography, was $2.2{\times}10^3$ KDa, The intrinsic viscosities of EPS-R were calculated to be 16.5 and 15.9 dL/g using the Huggins and Kraemer equations, respectively, with a 2.3 dL/g overlap. In terms of rigidity, the conformation of EPS-R was similar to that of caboxymethyl cellulose ($5.0{\times}10^{-2}$). The rheological behavior of EPS-R dispersion indicated that the formation of a structure intermediate between that of a random-coil polysaccharide and a weak gel. The aqueous dispersion of EPS-R at concentrations ranging from 0.25 to $1.0\%$ (w/w) showed a marked shear-thinning property in accordance with Power-law behavior. In aqueous dispersions of $1.0\%$ EPS-R, the consistency index (K) and flow behavior index (n) were 1,410 and 0.73, respectively. EPS-R was Stable to pH and salts.

Effect of Cattle Breeds on Milk Composition and Technological Characteristics in China

  • Yang, T.X.;Li, H.;Wang, F.;Liu, X.L.;Li, Q.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.6
    • /
    • pp.896-904
    • /
    • 2013
  • Cattle breeds have a striking effect on milk, including milk composition and technological characteristics. This study aims to compare milk composition, acidification activity, viscosity, milk dispersion system stability and casein molecular weight among three buffalo breeds in China. The technological characteristics of milk produced by three cattle breeds of river buffalo (Murrah), crossbreed 1st generation ($F_1$), crossbreed multiple generation ($F_H$, $H{\geq}3$) buffaloes were investigated. Cattle breeds showed evident effect on milk protein, fat and total solids content, but little effect on most of buffalo casein molecular weight. Milk fat, protein content and the viscosity of buffalo milk from river buffalo were lower than those of $F_1$ and $F_H$, so was the buffer capacity. The viscosity was negatively correlated to temperature and concentration. Results of stability coefficient showed that milk dispersion system had the best dynamic stability characteristics under pH 6.6 and 6 times dilution, while zeta potential of Murrah milk was slightly higher than that of hybrid offspring ($F_1$, $F_H$). SDS-PAGE results showed that buffalo ${\alpha}_s$-casein had a slightly faster mobility than standard ${\alpha}_s$-casein; while buffalo ${\beta}$-casein showed a slightly slower mobility than standard ${\beta}$-casein. There is no clear differences in molecular weight of ${\alpha}_s$-, ${\beta}$-, and ${\kappa}$-casein among Murrah, $F_1$ and $F_H$.

A study on properties and synthesis of polyurethane compound formed hard segments by polyether polyol for lamb skin coat (Lamb skin 코팅용 polyether polyol을 이용한 hard segment를 형성하는 polyurethane compound의 합성 및 물성에 관한 연구)

  • Lee, Joo-Youb;Nam, Sang-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.296-304
    • /
    • 2014
  • For this research, prepared polyurethane dispersion of hard segment type and polyethylene emulsion wax. Use these resin, this article has been analyzed about mechanical properties variation by increasing amount of polyethylene emulsion wax on Lam skin leather and dried film. According to measure data for solvent resistance, PUD had good property. As known in the results, increase of polyethylene wax constant did not influence to big variation of hybrid resin properties. As test of tensile strength, PUD had good tensile characteristic($1.235kg_f/mm^2$) and PUD-EW4 had lowest tensile characteristic($1.022kg_f/mm^2$). As same as tensile characteristic, abrasion test determined PUD(52.225 mg.loss) had highest properties. In elongation case, PUD showed 698 % modulus which was best properties in this experiment.

The Role of Nano-particles on the Material Properties of Epoxy/Fe2O3 Nano-composites (Epoxy/Fe2O3 나노 복합재의 물성치에 미치는 나노 입자의 역할)

  • Park, Joo-Hyuk;Kim, Jung-Yub
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.88-93
    • /
    • 2002
  • The objective of this study is to obtain fundamental understandings involving the manufacturing process of nano-composite via resin transfer molding and explore the role of nano sized $Fe_2O_3$ particles in the epoxy/$Fe_2O_3$ nano-composites. To achieve this goal, following investigations have been conducted: Define the optimum dispersion technique of nano-particles, identify the effect of the nano-particles to the resin viscosity, characterize the key mechanical properties versus particle loading amounts, and explore the usefulness and quality improvement in nano-composites. These efforts will be useful for designers to quantify application payoffs and define a technology development roadmap for manufacturing nano-composites, and will help an engineering design and manufacturing nano-composites more efficiently by providing the design methodology.

Preparation and Characteristics of Biodegradable Polyurethane/Clay Nanocomposite Films (생분해성 폴리우레탄/클레이 나노복합 필름의 제조 및 특성 연구)

  • Kim, Seong Woo
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.382-387
    • /
    • 2013
  • Biodegradable polyurethane (PU)/clay nanocomposite films were prepared via extrusion compounding process followed by casting film process. Organically modified montmorillonite (denoted as C30B) with a large amount of hydroxyl groups on its surface was used for the formation of strong bonding with PU resin. From both XRD analysis and TEM observations, the intercalated and exfoliated structure, and dispersion state of silicate platelets in the compounded nanocomposite films were confirmed. In addition, the rheological and tensile properties, optical transparency, oxygen permeability of the prepared nanocomposites were investigated as a function of added nanoclay content, and moreover based on these results, the corelation between the morphology and the resulting properties of the nanocomposites could be presented. The inclusion of nanoclays at appropriate content resulted in remarkable improvement in the nanocomposite performance including tensile modulus, elongation, transparency, and oxygen barrier property, however at excess amount of nanoclays, reduction or very slight increase was observed due to poor dispersion. The biodegradability of the prepared nanocomposite film was evaluated by examining the deterioration in the barrier and tensile properties during degradation period under compost.

Manufacture and Properties of PMMA Grafted Starch/Carbon Black/NBR Composites (PMMA 그래프트 전분/카본블랙/NBR 복합체의 제조와 물성)

  • Kim, Min-Su;Cho, Ur Ryong
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.764-769
    • /
    • 2013
  • Starch was grafted by poly(methyl methacrylate) through the emulsion polymerization method. Modified starch/(acrylonitrile-butadiene rubber) (NBR) compounds were prepared by a latex blend method. The morphology, thermal properties and mechanical properties of the modified starch/carbon black/NBR composites were investigated with the change of starch concentration. The mechanical properties of the composites were improved by the addition of modified starch. But, when the concentration of modified starch was higher than 40 phr, the mechanical properties were deteriorated due to the poor dispersion of modified starch. At the same ratio of starch to carbon black, the composite showed a synergistic reinforcing effect by the good dispersion and high cross-linking density. In addition, the tensile strength, storage modulus, hardness, swelling and other properties were the best.

The Effect of Mercaptoundecanoic Acid (MUA) Coating on Dispersion Property of Au Nanoparticles in Synthesis of Au/TiO2 Core-shell Nanoparticles (Au/TiO2 core-shell 나노입자의 합성에 있어서 Au 나노입자의 분산특성에 미치는 Mercaptoundecanoic acid (MUA)의 피복 효과)

  • Yu, Yeon-Tae;Kim, Byoung-Gyu
    • Korean Journal of Materials Research
    • /
    • v.16 no.12
    • /
    • pp.754-760
    • /
    • 2006
  • Mercaptoundecanoic acid (MUA) has been used to enhance the dispersity of Au nanoparticles in organic solvent and the affinity between the Au nanoparticles surface and titanium dioxide shell in the synthesis of $Au/TiO_2$ core-shell composite nanoparticles. The dispersity of the MUA-coated Au nanoparticles in ethanol aqueous solution with different concentration of $H_2O$ was investigated by UV-Vis. absorption spectrum and the coating amount of MUA was varied from 0.02 mM to 1.0 mM. The MUA-coated Au nanoparticles were highly dispersed in pure $H_2O$ in the wide range of the coating amount of MUA. On the contrary, the MUAcoated Au nanoparticles showed an enhanced stability in the ethanol/$H_2O$=8/2 mixed solution only when the coating amount of MUA was 0.05 mM, and in the ethanol/$H_2O$=7/3 mixed solution when the coating amount of MUA was in the range from 0.02 mM to 0.17 mM. From this systematic study, it can be inferred that the stability and the dispersibility of Au nanoparticles in organic solvents are highly sensitive towards the amount of MUA coating.

Comparison of SBR/BR Blend Compound and ESBR Copolymer Having Same Butadiene Contents

  • Hwang, Kiwon;Lee, Jongyeop;Kim, Woong;Ahn, Byungkyu;Mun, Hyunsung;Yu, Eunho;Kim, Donghyuk;Ryu, Gyeongchan;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.54-60
    • /
    • 2019
  • The rapid development of the automobile industry is an important factor that led to the dramatic development of synthetic rubber. The tread part of tire that comes in direct contact with the road surface is related to the service life of the tire. Rubber compounds used in tire treads are often blended with SBR (styrene-butadiene rubber) and BR (butadiene rubber) to satisfy physical property requirements. However, when two or more kinds of rubber are blended, phase separation and silica dispersion problems may occur due to non-uniform mixing of the rubber. Therefore, in this study, we synthesized an SBR copolymer with the same composition as that of a typical SBR/BR blend compound by controlling butadiene content during ESBR (emulsion styrene-butadiene rubber) synthesis. Subsequently, silica filled compounds were manufactured using the synthesized ESBR, and their mechanical properties, dynamic viscoelasticity, and crosslinking density were compared with those of the SBR/BR blended compound. When the content of butadiene was increased in the silica filled compound, the cure rate accelerated due to an increased number of allylic positions, which typically exhibit higher reactivity. However, the T-2 compound with increased butadiene content by synthesis less likely to show an increase in crosslink density due to poor silica dispersion. In addition, the T-3 compound containing high cis BR content showed high crosslink density due to its monosulfide crosslinking structure. Because of the phase separation, SBR/BR blend compounds were easily broken and showed similar $M_{100%}$ and $M_{300%}$ values as those of other compounds despite their high crosslink density. However, the developed blend showed excellent abrasion resistance due to the high cis-1,4 butadiene content and low rolling resistance due to the high crosslink density.

Preparation of Polyurushiol (PUOH) Using Urushiol and Property of LDPE / PUOH Composite Films (우루시올을 활용한 폴리우루시올(PUOH)제조 및 LDPE/PUOH 복합필름 특성에 관한 연구)

  • Kim, Dowan;Kim, Insoo;Seo, Jongchul;Seo, Jungsang
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.546-553
    • /
    • 2012
  • Urushiol extracted from lacquer tree exhibits good thermal stabilities as well as antimicrobial andantioxidant properties. However, it has been known that the urushiol derivates bring out allergy. In this study, polyurushiol (PUOH) powders were successfully synthesized for the safe and convenient handling of allergic urushiol. First, the as-synthesized PUOH was confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), thermal gravimetric analyzer (TGA), antioxidant test and antimicrobial test. And then, six different LDPE/PUOH composite films were prepared via a twin screw extruder system and investigated their feasibility to use as active packaging materials. Their chemical structures, morphology, thermal optical and antimicrobial properties of the LDPE/PUOH composite films were investigated as a function of PUOH contents. FTIR and SEM results showed that LDPE/PUOH composite films have a weak interfacial interaction and poor dispersion with a high PUOH loading. The thermal properties increased up to 3 wt% as the content of PUOH increases. Compared to the pure LDPE films, LDPE/PUOH composite films are more effective in the UV absorbance and antibacterial activity against E. coli. To maximize the performance of LDPE/PUOH compositefilms as the packaging materials, further researches are required to enhance the dispersion of PUOH powders in the LDPE matrix.

Study on GO Dispersion of PC/GO Composites according to In-situ Polymerization Method (In-situ 중합방법에 따른 폴리카보네이트(PC)/그래핀 옥사이드(GO) 복합체의 GO 분산성 연구)

  • Lee, Bom Yi;Park, Ju Young;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.336-340
    • /
    • 2015
  • Three different types of polycarbonate (PC)/graphene oxide (GO) composites using diphenyl carbonate as a monomer were fabricated by melt polymerization. Those were the PC/GO composite (PC/GO) using a twin extruder, in-situ PC/GO composite (PC/GO-cat.) using a catalyst, and in-situ PC/GO composite (PC/GO-COCl) using a GO-COCl treated by -COCl, Chemical structures of the composites were confirmed by C-H and C=O stretching peak at $3000cm^{-1}$ and $1750cm^{-1}$, respectively. The slope for the storage (G') versus loss (G") modulus plot decreased with an increase in the heterogeneous property of polymer melts. So we can check the GO dispersion of the PC/GO composites using by the slop for G'-G" plot. According to the G'- G" slopes for three different types of PC/GO composites, GO was well dispersed within PC matrix in case of PC/GO and PC/GO-cat.. It was also confirmed by atomic force microscope (AFM) photos. One of the reasons for the poor GO dispersion of PC/GO-COCl is branching and crosslinking processes occurred during polymerization, which was further confirmed by a plot for the complex modulus versus phase difference.