• Title/Summary/Keyword: dispersed phases

Search Result 102, Processing Time 0.018 seconds

The Effect of Au Addition on the Hardening Mechanism in Ag-30wt%Pd-10wt%Cu Alloy (Ag-30wt% Pd-10wt% Cu 3원합금(元合金) 및 Au 첨가합금(添加合金)의 시효경화특성(時效硬化特性))

  • Lee, K.D.;Nam, S.Y.
    • Journal of Technologic Dentistry
    • /
    • v.21 no.1
    • /
    • pp.27-41
    • /
    • 1999
  • The Ag-Pd-Cu alloys containing a small amount of Au is commonly used for dental purposes, because this alloy cheaper than Au-base alloys for clinical use. However, the most important characteristic of this alloy is age-hardenability, which is not exhibited by other Ag-base dental alloys. The specimens used were Ag-30Pd-10Cu ternary alloy and Au addition alloy. These alloys were melted and casted by induction electric furnace and centrifugal casting machine in Ar atmosphere. These specimens were solution treated for 2hr at $800^{\circ}C$ and were then quenched into iced water, and aged at 350-$550^{\circ}C$ Age-hardening characteristic of the small Au-containing Ag-Pd-Cu dental alloys were investigated by means of hardness testing, X-ray diffraction and electron microscope observations, electrical resistance, differential scanning calorimetric, energy dispersed spectra and electron probe microanalysis. Principal results are as follows ; Maximum hardening occured in two co-phases of ${\alpha}_2$ + PdCu In stage II, decomposition of the $\alpha$ solid solution to a PdCu ordered phase($L1_o$ type) and an Ag-rich ${\alpha}_2$ phase occurred and a discontinuous precipitation occurred at the grain boundary. From the electron microscope study, it was concluded that the cause of age-hardening in this alloy is the precipitation of the PdCu redered phase, which has AuCu I type face-centered tetragonal structure. Precipitation procedure was ${\alpha}{\to}{\alpha}_1+PdCu{\to}{\alpha}_2+PdCu$ at Pd/Cu = 3 Pd element of Ag-Pd-Cu alloy is more effective dental alloy on anti-corrosion and is suitable to isothermal ageing at $450^{\circ}C$.

  • PDF

A Study on Production Kiln Site Estimation, based on Historical Ceramic Characteristics and Scientific Analysis of the Celadons Excavated From the Beopcheon Temple Site and Son-gok 2-ri 4th Kiln Site (법천사지 청자와 손곡2리 4호 가마터 청자의 도자사적 성격과 과학적 분석을 통한 생산 가마터 추정 연구)

  • Lee, Byeong-hoon;Yun, Seok-in
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.3
    • /
    • pp.24-41
    • /
    • 2014
  • Since the celadons excavated from the Son-gok 2-ri 4th kiln site are located in the Beopcheon temple site and at close range, the similarity to the celadons excavated from the Beopcheon temple site is being raised. Thus, this study examined the correlation using a natural-scientific method. In this study, historical ceramic properties of total 19 celadons were examined and they were scientifically analyzed. First of all, according to the scientific analysis, chemical compositions of celadon clay showed a dispersed distribution at RO2 3.79-7.77mole and RO+R2O 0.33-0.49mole. When the microstructure was analyzed, most celadons excavated from the Beopcheon temple site, Wonju, which are estimated to be used in real life, had a favorable state, and some celadons from the Son-gok 2-ri 4th kiln site were found not to be glazed and sintered properly. When analyzing body crystalline phases of the celadons using the XRD method, quartz and mullite were extracted from all of the samples. And corundum was extracted from sg4 sample. Though firing temperature of each sample was different, they were mostly fired to temperatures between 1150 and $1200^{\circ}C$ and some of them experienced a low temperature of $1100^{\circ}C$ or a high temperature above $1200^{\circ}C$. Various chemical compositions and producing techniques were observed in the celadons from the Beopcheon temple site and Son-gok 2-ri 4th kiln site and it is hard to assure that the Son-gok 2-ri 4th kiln site was the production kiln site of the celadons used in the Beopcheon temple site. But according to the analysis of rare earth elements, some of the celadons from the Beopcheon temple site and Son-gok 2-ri 4th kiln site displayed a distribution pattern with certain regularity and this implies there is a possibility that the raw materials used in producing the ceramics might have come from the same origin. From the perspective of ceramic history, the celadons excavated from the Beopcheon temple site and Son-gok 2-ri 4th kiln site were produced using the same molding and sintering technique. Also, it is estimated that they were produced in the 12th or 13th century, judging from the overall shapes and patterns of the celadons.