• 제목/요약/키워드: dispersed particle size

검색결과 251건 처리시간 0.024초

SiC 입자크기가 $Si_{3}N_{4}/SiC$ 초미립복합재료의 기계적 특성과 미세구조에 미치는 영향 (Effect of SiC mean particle size on mechanical properties and microstructure of $Si_{3}N_{4}/SiC$ nanocomposites)

  • 황광택;김창삼;정덕수;오근호
    • 한국결정성장학회지
    • /
    • 제6권3호
    • /
    • pp.392-398
    • /
    • 1996
  • $Si_{3}N_{4}$에 평균입경이 다른 SiC 분말을 0, 10, 20, 30, 40 vol% 첨가하여 고온가압소결법으로 초미립복합재료를 제조하였다. SiC의 첨가량에 따라 $Si_{3}N_{4}$의 결정립성장이 억제되어 원형의 미세한 결정립들이 많아졌다. 이러한 경향은 평균입경이 작은 SiC를 사용한 조성에서 현저하게 나타났다. 이에 따라 파괴강도와 경도는 작은 SiC를 첨가한 시편에서 높은 값을 나타냈으며, 파괴인성은 낮았다.

  • PDF

나노크기의 ZrO2와 Graphite 분말 혼합체의 열탄소환원법에 의한 고분산 초미립 ZrC 분말의 합성 (Facile Synthesis of Highly Dispersed Ultra-fine ZrC Powders by Carbothermal Reduction Method Using Nanosized ZrO2 and Nanosized Graphite Powder Mixtures)

  • 이화준;류성수
    • 한국분말재료학회지
    • /
    • 제20권2호
    • /
    • pp.100-106
    • /
    • 2013
  • Ultra-fine zirconium carbide (ZrC) powder with nano-sized primary particles was synthesized by the carbothermal reduction method by using nano-sized $ZrO_2$ and nano-sized graphite powders mixture. The synthesized ZrC powder was well dispersed after simple milling process. After heat-treatment at $1500^{\circ}C$ for 2 h under vacuum, ultra-fine ZrC powder agglomerates (average size, $4.2{\mu}m$) were facilely obtained with rounded particle shape and particle size of ~200 nm. Ultra-fine ZrC powder with an average particle size of 316 nm was obtained after ball milling process in a planetary mill for 30 minutes from the agglomerated ZrC powder.

Study on the Simulation for the Removal of Different Sized Particles in Suspension by Deep-Bed Filtration

  • Choo, Chang-Upp
    • International Journal of Safety
    • /
    • 제4권1호
    • /
    • pp.18-22
    • /
    • 2005
  • A model was proposed for investigating the particle removal from suspension with particles of different sizes by deep-bed filtration, and the collection efficiency was predicted by computer simulation. Deposited particles on the pore surface may act as additional collector and reduce the pore size, which contribute to the improved collection efficiency with increase of deposition. Computer experiments for suspension of particles of three sizes and its equivalent size of mono particles were carried out and compared. The collection efficiency of suspension with poly-dispersed particles shows higher efficiency than that of suspension with mono-dispersed particles. Also the collection efficiency of smell particle of mixture is higher that that of same uniform size particles.

Control of morphology and interfacial tension of PC/SAN blends with compatibilizer

  • Kim, J.H.;Kim, M.J.;Kim, C.K.;Lee, J.W.
    • Korea-Australia Rheology Journal
    • /
    • 제13권3호
    • /
    • pp.125-130
    • /
    • 2001
  • Block copolymers of PC-b-PMMA (polycarbonate-b-polymethylmethacrylate) and PC -b-SAN (polycarbonate-b-(styrene-c-acrylonitrile)), were examined as compatibilizers for blonds of PC with SAN copolymer. The average diameter of the dispersed particles was measured with an image analyser, and the interfacial properties of the blonds were analysed with an imbedded fiber retraction (IFR) technique. The average diameter of dispersed particles and interfacial tension of the PC/SAN blends reached a minimum value when the SAN copolymer contained about 24 wt% AN. Interfacial tension and particle size were further reduced by adding compatibilizer to the PC/SAN blends. PC-b-PMMA was more effective than PC-b-SAN as a compatibilizer in reducing the average diameter of the dispersed particles and interfacial tension of PC/SAN blend. A direct proportionality between the particle diameter and interfacial tension was also observed. The interfacial properties of the PC/SAN blends were optimized by adding a block copolymer and using an SAN copolymer that had minimum interaction energy with PC.

  • PDF

Prepartion and Characterization of the Pt doped $TiO_2$ Membranes

  • Bae, Dong-Sik;Han, Kyong-Sop;Choi, Sang-Hael
    • The Korean Journal of Ceramics
    • /
    • 제3권1호
    • /
    • pp.52-56
    • /
    • 1997
  • The Pt doped $TiO_2$ composite membranes were prepared by the sol-gel process. The Pt doped titania sol was peptized with hydrochloric acid in the pH range of 1.23 to 1.32 at 5$0^{\circ}C$. The average particle size of the Pt doped titania sol was shown to be below 15nm and well dispersed in the solution. XPS show the Pt elements continuous and homogeneous dispersed in the $TiO_2$ membrane. The mean particle size of the Pt doped $TiO_2$ composite membrane has smaller than that of the undoped $TiO_2$ composite membrane. The average pore size of the Pt doped $TiO_2$ composite membrane was increased from 58 to 193 $\AA$ with firing temperature changed from 550 to 85$0^{\circ}C$. It was observed that the Pt doped $TiO_2$ composite membranes showed crack-free and homogeneous microstructue as well as narrow particle size distribution up to above 75$0^{\circ}C$.

  • PDF

Double Convective Assembly Coatings of FePt Nanoparticles to Prevent Particle Coalescence during Annealing

  • Hwang, Yeon
    • 한국재료학회지
    • /
    • 제21권3호
    • /
    • pp.156-160
    • /
    • 2011
  • FePt nanoparticles suspension was synthesized by reduction of platinum acetylacetonate and decomposition of iron pentacarbonyl in the presence of oleic acid and oleyl amine. FePt nanoparticles were coated on a substrate by convective assembly from the suspension. To prevent the coalescence during the annealing of FePt nanoparticles double convective coatings were tried. First convective coating was for silica particle assembly on a silicon substrate and second one was for FePt nanoparticles on the previously coated silica layers. It was observed by scanning electron microscopy (SEM) that FePt nanoparticles were dispersed on the silica particle surface. After annealing at $700^{\circ}C$ for 30 minutes under nitrogen atmosphere, FePt nanoparticles on silica particles were maintained in a dispersed state with slight increase of particle size. On the contrary, FePt nanoparticles that were directly coated on silicon substrate showed severe particle growth after annealing due to the close-packing of nanoparticles during assembly. The size variation during annealing was also verified by X-ray diffractometer (XRD). It was suggested that pre-coating, which offered solvent flux oppose to the capillary force between FePt nanoparticles, was an effective method to prevent coalescence of nano-sized particles under high temperature annealing.

슬러리 가압함침에 의한 3D Mullite 섬유 Preform의 알루미나 입자 충전 (Packing of Alumina Particles in 3D Preform of Mullite Fiber by Slurry Pressure-Infiltration)

  • 심수만
    • 한국세라믹학회지
    • /
    • 제50권6호
    • /
    • pp.528-532
    • /
    • 2013
  • Well-dispersed slurries of submicron-sized alumina powders were pressure-infiltrated in 3D preforms of mullite fibers and the effects of the particle size and infiltration pressure on the particle packing characteristics were investigated. Infiltration without pressure showed that the packing density increased as the particle size decreased due to the reduction of the friction between the particles and the fibers. The infiltrated preforms contained large pores in the large voids between the fiber tows and small pores in the narrow voids between the individual fibers. Pressure infiltration resulted in a packing density of 77% regardless of the particle size or the infiltration pressure(210 ~ 620 kPa). Pressure infiltration shortened the infiltration time and eliminated the large pores in preforms infiltrated with the slurries of smaller particles. The slurry pressure-infiltration process is thus an efficient method for the packing of matrix materials in various preforms.

Hy-SMPS의 개발 및 성능평가 (Development and Evaluation of Hy-SMPS)

  • 이홍규;은희람;이건호;안강호
    • 한국입자에어로졸학회지
    • /
    • 제11권2호
    • /
    • pp.57-61
    • /
    • 2015
  • Atmospheric nano-particles along the altitude is one of the main factors causing severe weather phenomena. It is a challenge to find the precise particle size distribution. One useful instrument includes a scanning mobility particle sizer (SMPS). This measures the size distribution of submicron aerosols. The SMPS consists of a condensation particle counter (CPC), differential mobility analyzer (DMA), high voltage power supplier (HVPS), and neutralizer. Due to the many components, it is difficult to install a commercial SMPS into a tethered balloon package system (Eun, 2011). In this study, we customized a SMPS for the tethered balloon package system called Hy-SMPS. It is portable, compact in structure, and evaluated by TSI SMPS using mono and poly-dispersed particles.

Emulsion법에 의한 실리카 분말의 합성에서 반응조건이 입자의 형성에 미치는 영향 (The Effect of Reaction Condition on Particle Formation in the Synthesis of Silica Powder Using Emulsion)

  • 이상근;장윤식;문병영;강범수;박희찬
    • 한국재료학회지
    • /
    • 제15권11호
    • /
    • pp.717-721
    • /
    • 2005
  • Silica powders were synthesized using emulsion solution containing water, nonionic surfactant of Triton N-57, and cyclohexane. Silica powders were prepared at low cost using inexpensive starting material of sodium silicate and ammonium sulfate. Morphology, size and size distribution were observed and determined using SEM. The powder was identified as silica by FT-IR and XRD analysis. Particle size and size distributions were affected by concentration of reactants, reaction time, and concentration of surfactant. Particle size were increased with increasing concentration of reactants and particles became dense with increasing reaction time. As R value increased, tile particle size was increased, reached a certain value and then decreased again. The silica powders synthesized under optimum condition were spherical in shape, $0.8{\mu}m$ in average particle size, narrow in particles size distribution, and well dispersed.

확장된 Maxwell-Wagner 분극 모델에 의한 서로 크기가 다른 입자들로 구성된 이성분계 전기유변 유체의 전산 모사 (Simulation of Bi-dispersed Electrorheological Fluids of Different Particle Sizes by the Extended Maxwell-Wagner Polarization Model)

  • 김영대
    • Korean Chemical Engineering Research
    • /
    • 제60권4호
    • /
    • pp.613-619
    • /
    • 2022
  • 전도성 입자로 제조된 전기유변(Electrorheological) 유체에서 입자 크기 및 서로 다른 크기의 입자들의 혼합이 전기유변 현상에 어떤 영향을 미치는지 살펴보기 위해 Onsager 이론으로 확장된 Maxwell-Wagner 분극 모델을 이용하여 전산 모사를 수행하였다. 전산 모사 결과 입자의 부피 분율이 같은 경우 단일한 크기의 입자로 구성된 균일한 전기유변 유체의 동적 항복응력은 입자 크기에 무관하였고, 크기가 서로 다른 입자들로 혼합된 비균일 전기유변 유체의 동적 항복응력은 균일한 전기유변 유체에 비해 감소하였다. 입자 부피 분율이 같은 경우 ${\dot{\gamma}}^*$≧0.01인 범위에서 큰 입자로 구성된 균일한 전기유변 유체가 작은 입자로 구성된 균일한 전기유변 유체보다 전단응력이 큰 것으로 나타났으며, ${\dot{\gamma}}^*$≧1인 경우에는 전기유변 유체는 큰 입자의 비율이 증가할수록 전단응력이 증가함을 보였다. 모든 입자 크기 및 조성에 대해 전도성 입자로 제조된 전기유변 유체의 특성인 비제곱 전기유변 현상(∆𝛕 ∝ En, n ≈ 1.55)도 예측하였다.