• Title/Summary/Keyword: dislocation substructure

Search Result 15, Processing Time 0.02 seconds

Reproducing kernel based evaluation of incompatibility tensor in field theory of plasticity

  • Aoyagi, Y.;Hasebe, T.;Guan, P.C.;Chen, J.S.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.4
    • /
    • pp.423-435
    • /
    • 2008
  • This paper employs the reproducing kernel (RK) approximation for evaluation of field theory-based incompatibility tensor in a polycrystalline plasticity simulation. The modulation patterns, which is interpreted as mimicking geometrical-type dislocation substructures, are obtained based on the proposed method. Comparisons are made using FEM and RK based approximation methods among different support sizes and other evaluation conditions of the strain gradients. It is demonstrated that the evolution of the modulation patterns needs to be accurately calculated at each time step to yield a correct physical interpretation. The effect of the higher order strain derivative processing zone on the predicted modulation patterns is also discussed.

Interaction fields based on incompatibility tensor in field theory of plasticity-Part II: Application-

  • Hasebe, Tadashi
    • Interaction and multiscale mechanics
    • /
    • v.2 no.1
    • /
    • pp.15-30
    • /
    • 2009
  • The theoretical framework of the interaction fields for multiple scales based on field theory is applied to one-dimensional problem mimicking dislocation substructure sensitive intra-granular inhomogeneity evolution under fatigue of Cu-added steels. Three distinct scale levels corresponding respectively to the orders of (A)dislocation substructures, (B)grain size and (C)grain aggregates are set-up based on FE-RKPM (reproducing kernel particle method) based interpolated strain distribution to obtain the incompatibility term in the interaction field. Comparisons between analytical conditions with and without the interaction, and that among different cell size in the scale A are simulated. The effect of interaction field on the B-scale field evolution is extensively examined. Finer and larger fluctuation is demonstrated to be obtained by taking account of the field interactions. Finer cell size exhibits larger field fluctuation whereas the coarse cell size yields negligible interaction effects.

Microstructural evolution of rheocast Al-6.2wt.%Si alloy with isothermal stirring (Al-6.2wt.%Si 합금의 등온교반시간에 따른 미세조직변화)

  • Lee, Jung-Ill;Park, Ji-Ho;Kim, Gyeung-Ho;Lee, Ho-In
    • Journal of Korea Foundry Society
    • /
    • v.15 no.5
    • /
    • pp.514-522
    • /
    • 1995
  • The microstructural evolution with isothermal stirring during semi-solid state processing of hypoeutectic Al-6.2wt%Si alloy was studied. Substructure of the individual primary solid particle in the slurry was investigated through transmission electron microscopy(TEM). Formation of subgrain boundaries on the rheocast Al-6.2wt%Si alloy is observed and the misorientation between the grains is shown typically under 2 degrees by analyzing selected area diffraction (SAD) and convergent beam electron diffraction (CBED) patterns. The existence of high angle grain boundaries are also observed in the alloy. Based upon these observations, mechanisms for the primary particles fragmentation are considered. With isothermal stirring, the dislocation density increases, and the evolution of dislocation cell structure takes place, which is interpreted as a process of achieving uniform deformation by dynamic recovery under applied shear stress.

  • PDF

Dynamic Precipitation and Substructure Stablility of Cu Alloy during High Temperature Deformation

  • Han, Chang-Suk;Choi, Dong-Nyeok;Jin, Sung-Yooun
    • Korean Journal of Materials Research
    • /
    • v.29 no.6
    • /
    • pp.343-348
    • /
    • 2019
  • Structural and mechanical effects of the dynamical precipitation in two copper-base alloys have been investigated over a wide range of deformation temperatures. Basing upon the information gained during the experiment, also some general conclusion may be formulated. A one concerns the nature of dynamic precipitation(DP). Under this term it is commonly understood decomposition of a supersaturated solid solution during plastic straining. The process may, however, proceed in two different ways. It may be a homogeneous one from the point of view of distribution and morphological aspect of particles or it may lead to substantial difference in shape, size and particles distribution. The effect is controlled by the mode of deformation. Hence it seems to be reasonable to distinguish DP during homogeneous deformation from that which takes place in heterogeneously deformed alloy. In the first case the process can be analyzed solely in terms of particle-dislocation-particle interrelation. Much more complex problem we are facing in heterogeneously deforming alloy. Deformation bands and specific arrangement of dislocations in form of pile-ups at grain boundaries generate additional driving force and additional nucleation sites for precipitation. Along with heterogeneous precipitation, there is a homogeneous precipitation in areas between bands of coarse slip which also deform but at much smaller rate. This form of decomposition is responsible for a specially high hardening rate during high temperature straining and for thermally stable product of the decomposition of alloy.

The development of deformation microstructures and textures in high Mn steels (고Mn강의 소성에 따른 미세조직및 Texture 변화에 관한연구)

  • Kim, Taek-Nam;Kim, Jong-Ok
    • The Journal of Natural Sciences
    • /
    • v.7
    • /
    • pp.83-90
    • /
    • 1995
  • The microstructural and textural development during rolling is compared in two Hadifield's steels (high Mn steel), one having low carbon content (0.65 wt.%) and the other high carbon (1.35 wt.%).In low carbon Hadfield's steel (LCHS) mixed microstructures are formed which contain intrinsic stacking faults, deformation twins, and brass type shear bands. The deformation twins are thought to be formed by the stacking of intrinsic stacking faults. The similar development to 70-30 brass texture is observed in early deformation. However the abnormal texture is developed after 40 % deformation, which is thought to be due to the martensite phase transformation. In high carbon Hadfield's steel (HCHS) mixed substructures of dislocation tangles, deformation twins, and shear bands (both copper and brass type) are found to develop. The texture development is similar to that of 70-30 brass. This is consistant with no carbon segregation and no martensitic phase transformation in HCHS. In spite of the difference of substructure and texture development during rolling in two steels, the difference in stacking fault energy is measured to be small ($2 mJm^-2$). The carbon segregation is only occurred in LCHS. Thus it is thought that the carbon segregation influence the microstructure and texture development during rolling. This is related with martensite phase transformation in LCHS.

  • PDF