• Title/Summary/Keyword: disks

Search Result 911, Processing Time 0.027 seconds

Wear of UHMWPE Pins against Ti-alloy and Stainless Steel Disks Moving in Two Kinematic Motions (두가지 기구운동을 하는 타이타늄 합금과 스테인레스 스틸 디스크에 대한 초고분자량 폴리에틸렌 핀의 마멸)

  • 이권용;김석영;김신윤
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.67-71
    • /
    • 2000
  • The wear behaviors of ultrahigh molecular weight polyethylene pins against titanium alloy and stainless steel disks moving in two different kinematic motion were investigated by conducting repeat pass rotational sliding and linear reciprocal sliding wear tests. Linear reciprocal motion wore more the polyethylene pin than did repeat pass rotational motion for both disk materials. It means that the repeated directional change of contact stresses generates more wear debris in polyethylene. For the linear reciprocal sliding tests, titanium alloy disks were damaged with some scratches after one million cycles but no surface damage was observed on the polyethylene pins. On the other hand, for the repeat pass rotational sliding tests, all titanium alloy disks were severely abraded on the entire region of sliding track. This phenomenon can be interpreted by that stress fatigue under repeated sliding contact initiated titanium oxide layer wear particles from disk surface, and these hard particles were embedded into polyethylene pin and then they severely abraded the disk surface. From these results it can be concluded that the kinematic motion in pin-on-disk wear tests play a crucial role on the wear behaviors of UHMWPE pins against titanium alloy and stainless steel disks.

  • PDF

Finite Element Analysis of High-speed Rotating Disks Considering Impulsive Loading by the Clearance and Contact (간격 및 접촉에 의한 충격하중을 고려한 고속 회전 디스크의 유한요소 해석)

  • Lee, Kisu;Kim, Yeong Sul;So, Jae Uk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.1
    • /
    • pp.45-53
    • /
    • 2014
  • For the time integration solution of the impulsive dynamic contact problem of high-speed rotating disks formulated by the finite element technique, the velocity and acceleration contact constraints as well as the displacement contact constraint are imposed for the numerical stability without spurious oscillations. The solution of the present technique is checked by the numerical simulation using the concentric high-speed rotating disks with the clearance and impulsive loading. It is shown that the almost steady state solution agrees with the corresponding analytical solution of the elasticity and that the differentiated constraints are crucial for the numerical stability of such high-speed contact problems of the disks under impulsive loading.

A Numerical Study of Stellar Bars and Nuclear Rings in Barred Galaxies

  • Seo, Woo-Young;Kim, Woong-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.34.1-34.1
    • /
    • 2019
  • To study the formation and evolution of stellar bars and gaseous nuclear rings in barred galaxies in realistic environments, we run fully self-consistent three-dimensional simulations of isolated disk galaxies. We consider two groups of models with cold or warm disks that differ in the radial velocity dispersion. We also vary the gas fraction of the disks. We found that a bar forms earlier and more strongly as the gas fraction increases in the cold disks, while the gas delays the bar formation in the warm disks. The bar formation enhances a central mass concentration which in turn weakens the bar strength temporarily, after which the bar regrows to become stronger in a model with a smaller gas fraction in both cold and warm disks. Although all bars rotate fast in the beginning, they rapidly turn to slow rotators. Gas infalling to the central region forms a dense star-forming nuclear ring. The ring size is very small when it first forms and grows over time. The ring star formation is episodic and bursty due to star formation feedback, and has a good correlation with the mass inflow rate to the ring. Some expanding shells produced by star formation feedback are sheared out in the bar regions and collide with dust lanes to appear as filamentary interbar spurs.

  • PDF

THE INSTABILITIES OF ACCRETION DISKS WITH RADIAL ADVECTION

  • WU XUE-BING
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.231-232
    • /
    • 1996
  • The local instabilities of accretion disks were extensively studied, with the considerations of radial advection, thermal diffusion and different disk geometry, dominated pressure and optical depth. Two inertial-acoustic modes in a geometrically thin, radiative cooling dominated disk depart from each other if very little advection is included. A geometrically slim, advection-dominated disk is found to be always stable if it is optically thin. However, if it is optically thick, the thermal diffusion has no effect on the stable viscous mode but has a significant contribution to enhance the thermal instability.

  • PDF

ELECTRON-POSITRON PAIRS IN ACCRETION DISKS

  • Shin, Mine-Shige;Kusunose, Masaaki
    • Publications of The Korean Astronomical Society
    • /
    • v.8 no.1
    • /
    • pp.265-272
    • /
    • 1993
  • Recent X-ray observations of the accretion disks in stellar black hole candidates have revealed rather complex behavior, which cannot be fully described by the simple picture of the standard disk model. In this paper, therefore, we discuss the effects of e+e- pair creation on the structure and the stability of hot accretion disks, aiming at the thorough understanding of emission properties of X-ray binaries containing black holes.

  • PDF

Technologies for Small Form Factor Optical Disks (초소형 디스크 요소기술)

  • Kim Jin-Hong;Kim Jong-Hwan
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.113-118
    • /
    • 2005
  • Small form factor optical disks for near-field optics using solid immersion lens were developed. Disk durability properties in terms of head-disk interface (HDI) properties were investigated by drag test, diamond like carbon film and lubricant film were coated on the small form factor disk to enhance HDI. Disks with glass substrates and lubricant films after heat treatment showed more durable characteristics. Coverlayers made of UV resin were uniformly coated by spin coating In which the ski-jump could not be formed by adopting outer ring technique.

  • PDF

High Speed Axial-gap BLDC Mtor Design (고속용 Axial-gap BLDC Motor 설계)

  • Kim, Young-Kwan;Park, Jin-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.116-118
    • /
    • 1998
  • This paper describes a basic structure, analysis of characteristics and test method for high speed axial-gap BLDC motor. The newly designed axial-gap BLDC motor has 2-stator disks with 3-rotor disks and is easy to increase power capacity by increasing the numbers of stator/rotor disks. For high speed operating, the rotor is composed of light and strong strength material and has several separated magnets to reduce stress concentraction by centrifugal force.

  • PDF

Technologies for Small Form Factor Optical Disks (초소형 디스크 요소기술)

  • Kim, Jin-Hong
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.1
    • /
    • pp.26-31
    • /
    • 2006
  • Small form factor optical disks for near-field optics using solid immersion lens were developed. Diamond like carbon film and lubricant film were coated on the small form factor optical disk to enhance the head-disk interface(HDI) characteristics. The disk durability properties in terms of HDI phenomena were investigated by drag test. Disks with glass substrates and the lubricant films experienced heat treatment showed more durable characteristics. Coverlayers made of UV resin were uniformly coated by spin coating in which the ski-jump could be removed by adopting outer ring technique

  • PDF

SUBARU EXPLORATIONS OF EXO-SOLAR PLANETS AND DISKS

  • TAMURA MOTOHIDE
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.319-324
    • /
    • 2005
  • To date, more than 150 exo-solar planets have been observed by various methods such as spectroscopic, photometric, astrometric, gravitational lensing, pulsar timing methods. However, all these are indirect methods; they do not directly image the planets. Only free-floating planets or their 'ana-log' have been directly detected so far. Thus the next milestone is the direct imaging of any kinds of planetary mass objects orbiting around normal (young) stars, which might have been associated with protoplanetary disks, the sites of planet formation. I will describe some SUBARU efforts to detect self-luminous young giant planets as companions as well as direct imaging of the protoplanetary disks of ${\~}$100 AU size. The results of near-infrared coronagraphic imaging with adaptive optics are briefly presented on AB Aur, HD 142527, T Tau, and DH Tau. Our results demonstrate the importance of high-resolution (${\~}$0.1 arcsec) direct imaging over indirect observations such as modeling based on spectral energy distributions. The SUBARU observations are a prelude to ALMA from the morphological point of view.