• Title/Summary/Keyword: disease vaccine

Search Result 666, Processing Time 0.031 seconds

Effectiveness and safety of seasonal influenza vaccination in children with underlying respiratory diseases and allergy

  • Kang, Jin-Han
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.4
    • /
    • pp.164-170
    • /
    • 2014
  • Influenza causes acute respiratory infections and various complications. Children in the high-risk group have higher complication and hospitalization rates than high-risk elderly individuals. Influenza prevention in children is important, as they can be a source infection spread in their communities. Influenza vaccination is strongly recommended for high-risk children with chronic underlying circulatory and respiratory disease, immature infants, and children receiving long-term immunosuppressant treatment or aspirin. However, vaccination rates in these children are low because of concerns regarding the exacerbation of underlying diseases and vaccine efficacy. To address these concerns, many clinical studies on children with underlying respiratory diseases have been conducted since the 1970s. Most of these reported no differences in immunogenicity or adverse reactions between healthy children and those with underlying respiratory diseases and no adverse effects of the influenza vaccine on the disease course. Further to these studies, the inactivated split-virus influenza vaccine is recommended for children with underlying respiratory disease, in many countries. However, the live-attenuated influenza vaccine (LAIV) is not recommended for children younger than 5 years with asthma or recurrent wheezing. Influenza vaccination is contraindicated in patients with severe allergies to egg, chicken, or feathers, because egg-cultivated influenza vaccines may contain ovalbumin. There has been no recent report of serious adverse events after influenza vaccination in children with egg allergy. However, many experts recommend the trivalent influenza vaccine for patients with severe egg allergy, with close observation for 30 minutes after vaccination. LAIV is still not recommended for patients with asthma or egg allergy.

Analysis of protective genotype of foot-and-mouth disease (FMD) Asia1 vaccine (구제역 Asia1 백신의 방어 유전형 분석)

  • Lee, Yeo-Joo;Chu, Jia-Qi;Lee, Seo-Yong;Kim, Su-Mi;Lee, Kwang-Nyeong;Ko, Young-Joon;Lee, Hyang-Sim;Cho, In-Soo;Nam, Seok-Hyun;Park, Jong-Hyeon
    • Korean Journal of Veterinary Service
    • /
    • v.34 no.2
    • /
    • pp.103-109
    • /
    • 2011
  • Asia1/Shamir that has been recommended by World Reference Laboratory for foot-and-mouth disease (FMD) is used as a vaccine strain, and is being prepared in many countries including Korea. Although it is assumed that vaccine strain Asia1/Shamir has a wide antigenicity, sufficient molecular biological analysis has not been accomplished yet. Complete genome sequence analysis showed that the region with the most severe variations was 1D region of structural protein-coding sequence; particularly amino acid 141~157 residues in 1D region RGD sites for binding to susceptible cells. In addition, five amino acids in 1D region were identified as characteristic sites that are different from other known Asia1 viruses. Asia1/Shamir strain was shown to be genetically similar to group VI that had occurred in the Middle East, but showed low level of genetic similarity to the group V viruses that had occurred in the Southeast Asia and China. It is considered that, if these viruses, group I and II including group V are introduced into Korea, care would be paid in case of inoculating the vaccine strain Shamir available in Korea.

Overlooking the Era of Vaccine against Coronavirus Disease 2019 (Coronavirus Disease 2019, 백신의 시대를 조망한다)

  • Lee, Sun-Hee
    • Health Policy and Management
    • /
    • v.31 no.1
    • /
    • pp.1-4
    • /
    • 2021
  • With this as a momentum of approval Pfizer vaccine against coronavirus disease 2019 (COVID-2019), it is changed to the era of vaccine rapidly. Most countries are trying to reserve effective vaccines and inoculate vaccines into high-risk populations for achieving community immunity. I reviewed several vaccine-related issues to be confronted for moving up to the end of COVID-2019: the efficacy and effectiveness of the approved vaccines, the priorities for vaccination into target groups, side effects, and distrust towards COVID-2019 vaccines. Evidence-based decision-making in the policy process and collaboration with professional groups are the most effective strategies for driving successful vaccination policy.

Rabbit Hemorrhagic Disease Virus Variant Recombinant VP60 Protein Induces Protective Immunogenicity

  • Yang, Dong-Kun;Kim, Ha-Hyun;Nah, Jin-Ju;Song, Jae-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1960-1965
    • /
    • 2015
  • Rabbit hemorrhagic disease virus (RHDV) is highly contagious and often causes fatal disease that affects both wild and domestic rabbits of the species Oryctolagus cuniculus. A highly pathogenic RHDV variant (RHDVa) has been circulation in the Korean rabbit population since 2007 and has a devastating effect on the rabbit industry in Korea. A highly pathogenic RHDVa was isolated from naturally infected rabbits, and the gene encoding the VP60 protein was cloned into a baculovirus transfer vector and expressed in insect cells. The hemagglutination titer of the Sf-9 cell lysate infected with recombinant VP60 baculovirus was 131,072 units/50 μl and of the supernatant 4,096 units/50 μl. Guinea pigs immunized twice intramuscularly with a trial inactivated RHDVa vaccine containing recombinant VP60 contained 2,152 hemagglutination inhibition (HI) geometric mean titers. The 8-week-old white rabbits inoculated with one vaccine dose were challenged with a lethal RHDVa 21 days later and showed 100% survival rates. The recombinant VP60 protein expressed in a baculovirus system induced high HI titers in guinea pigs and rendered complete protection, which led to the development of a novel inactivated RHDVa vaccine.

Evolving Problem Analyses of Recent Marek's Disease (최근 진화하는 마렉병의 원인 분석)

  • Jang, H.K.;Park, Y.M.;Cha, S.Y.;Park, J.B.
    • Korean Journal of Poultry Science
    • /
    • v.34 no.4
    • /
    • pp.301-318
    • /
    • 2007
  • Marek's disease (MD) is a highly contagious lymphoproliferative disease of poultry caused by the oncogenic herpesvirus designated Marek's disease virus (MDV). MD has a worldwide distribution and is thought to cause an annual loss over US$ one billion to the poultry industry. Originally described as a paralytic disease, today MD is mostly manifested as an acute disease with tumors in multiple visceral organs. MD is controlled essentially by the widespread use of live vaccines administered either in ovo into 18-day-old embryos or into chicks immediately after they hatch. In spite of the success of the vaccines in reducing the losses from the disease in the last 30 years, MDV strains have shown continuous evolution in virulence acquiring the ability to overcome the immune responses induced by the vaccines. During this period, different generations of MD vaccines have been introduced to protect birds from the increasingly virulent MDV strains. However, the virus will be countered each new vaccine strategy with ever more virulent strains. In spite of this concern, currently field problem from MD is likely to be controled by strategy of using bivalent vaccine. But, potential risk factors for outbreak of MD are still remained in this condition. The major factors can be thought that improper handling and incorrect administration of the vaccine, infection prior to establishment of immunity, suppression of immune system by environmental stress and outbreaks of more virulent MDV strain by using vaccine and genetic resistance of host.

Sequence analysis of VP2 gene of infectious bursal disease virus field isolate and vaccine strains (Infectious bursal disease virus 국내분리주 및 백신주의 VP2 gene의 비교분석)

  • Jin, Ji-Dong;Kang, Zheng-Wu;Kim, Sun-Joong;Kwon, Hyuk-Moo;Hahn, Tae-Wook
    • Korean Journal of Veterinary Research
    • /
    • v.46 no.3
    • /
    • pp.235-248
    • /
    • 2006
  • The VP2 full gene of Korean infectious bursal disease virus(IBDV) strain, SH/92, three attenuated vaccine strains, Bur706, Bursine-2 and CEV/AC strains, were amplified by reverse transcriptase-polymerase chain reaction and sequenced and compared with published VP2 gene sequences of IBDVs. The VP2 nucleotide sequence similarity between SH/92 and three vaccine stains was 95.6~96.5% whereas the nucleic acid similarity among three vaccine strains was 97.5~98.5%. The amino acid sequence similarity of VP2 of SH/92 compared with three vaccine strains was between 94.4 and 97.6% while the amino acid similarity among three vaccine strains was between 97.4 and 98.4%. The amino acid similarity between SH/92 and classical virulent strain, 52/70 and STC strain was 96.4 and 96.5%, respectively. The serine-rich heptapeptide was conserved in CEVAC and Bursine-2 as well as SH/92 but not in Bur706. The phylogenetic tree developed from amino acid sequences showed that SH/92 was categorized with vv IBDVs(HK46, OKYM, KKI, UPM94/273, SH95) in one branch while three vaccine strains were catagorized with STC strain in the other branch.

Immunogenicity of a new inactivated vaccine against feline panleukopenia virus, calicivirus, and herpesvirus-1 for cats

  • Dong-Kun Yang;Yu-Ri Park;Eun-Ju Kim;Hye Jeong Lee;Subin Oh;Bang-Hun Hyun
    • Korean Journal of Veterinary Research
    • /
    • v.63 no.1
    • /
    • pp.5.1-5.9
    • /
    • 2023
  • Feline panleukopenia virus (FPV), feline calicivirus (FCV), and feline herpesvirus type-1 (FHV-1) are major infectious pathogens in cats. We evaluated the immunogenicity of a new vaccine containing inactivated FPV, two FCVs, and FHV-1 in animals. An FPV, two FCVs, and an FHV-1 isolate were continuously passaged 70, 50, 80, and 100 times in CRFK cells. FP70, FC50, FC80, and FH100 were propagated and used as vaccine antigens. Two inactivated feline virus vaccines, feline rehydragel-adjuvanted vaccine (FRAV) and feline cabopol-adjuvanted vaccine (FCAV) were prepared and inoculated into mice and guinea pigs. Humoral immune responses were measured using hemagglutination inhibition (HI) for FPV and virus-neutralizing antibody (VNA) for two FCVs and FHV-1 tests. Serial passages in CRFK cells resulted in increase in titers of FPV and two FCVs but not FHV-1 The FCAV induced higher mean HI and VNA titers than the FRAV in guinea pigs; therefore, the FCAV was selected. Cats inoculated with FCAV developed a mean HI titer of 259.9 against FPV, and VNA titers of 64, 256, and 3.2 against FCV17D03, FCV17D283, and FHV191071, respectively. Therefore, cats inoculated with the FCAV showed a considerable immune response after receiving a booster vaccination.

Analysis of complete genome sequence of foot-and-mouth disease (FMD) Asia1 vaccine strain (구제역 Asia1 백신주의 전체 염기서열분석 및 특성)

  • Lee, Yeo-Joo;Chu, Jia-Qi;Lee, Seo-Yong;Kim, Su-Mi;Lee, Kwang-Nyeong;Ko, Young-Joon;Lee, Hyang-Sim;Cho, In-Soo;Nam, Seok-Hyun;Park, Jong-Hyeon
    • Korean Journal of Veterinary Service
    • /
    • v.34 no.2
    • /
    • pp.95-102
    • /
    • 2011
  • Foot-and-mouth disease (FMD) is one of the most infectious diseases affecting cloven-hoofed animals including cattle, sheep, goats, and pigs. Seven serotypes of foot-and-mouth disease virus with multiple subtypes within each serotype have been identified until now. In particular, it has been demonstrated that the outbreak of the serotype Asia1 reported from China, Mongolia and North Korea since 2005 is mostly classified into genetic group V. Though it has been recommended that Asia1 Shamir strain can be used as a high priority vaccine by World References Laboratory for FMD, the complete nucleotide sequences of the strain has not yet been determined. In this study, to be prepared for Asia1 type viruses that may be brought into Korea, the complete genome sequence of this vaccine strain Asia1 Shamir including its 5' and 3' non-coding region was identified.

Efficacy of genotype-matched Newcastle disease virus vaccine formulated in carboxymethyl sago starch acid hydrogel in chickens vaccinated via different routes

  • Mahamud, Siti Nor Azizah;Bello, Muhammad Bashir;Ideris, Aini;Omar, Abdul Rahman
    • Journal of Veterinary Science
    • /
    • v.23 no.4
    • /
    • pp.25.1-25.14
    • /
    • 2022
  • Background: The commercially available Newcastle disease (ND) vaccines were developed based on Newcastle disease virus (NDV) isolates genetically divergent from field strains that can only prevent clinical disease, not shedding of virulent heterologous virus, highlighting the need to develop genotype-matched vaccines Objectives: This study examined the efficacy of the NDV genotype-matched vaccine, mIBS025 strain formulated in standard vaccine stabilizer, and in carboxymethyl sago starch-acid hydrogel (CMSS-AH) following vaccination via an eye drop (ED) and drinking water (DW). Methods: A challenge virus was prepared from a recent NDV isolated from ND vaccinated flock. Groups of specific-pathogen-free chickens were vaccinated with mIBS025 vaccine strain prepared in a standard vaccine stabilizer and CMSS-AH via ED and DW and then challenged with the UPM/NDV/IBS362/2016 strain. Results: Chickens vaccinated with CMSS-AH mIBS025 ED (group 2) developed the earliest and highest Hemagglutination Inhibition (HI) NDV antibody titer (8log2) followed by standard mIBS025 ED (group 3) (7log2) both conferred complete protection and drastically reduced virus shedding. By contrast, chickens vaccinated with standard mIBS025 DW (group 5) and CMSS-AH mIBS025 DW (group 4) developed low HI NDV antibody titers of 4log2 and 3log2, respectively, which correspondingly conferred only 50% and 60% protection and continuously shed the virulent virus via the oropharyngeal and cloacal routes until the end of the study at 14 dpc. Conclusions: The efficacy of mIBS025 vaccines prepared in a standard vaccine stabilizer or CMSS-AH was affected by the vaccination routes. The groups vaccinated via ED had better protective immunity than those vaccinated via DW.

Intranasal Immunization With Nanoparticles Containing an Orientia tsutsugamushi Protein Vaccine Candidate and a Polysorbitol Transporter Adjuvant Enhances Both Humoral and Cellular Immune Responses

  • Cheol Gyun Kim;Won Kyong Kim;Narae Kim;Young Jin Pyung;Da-Jeong Park;Jeong-Cheol Lee;Chong-Su Cho;Hyuk Chu;Cheol-Heui Yun
    • IMMUNE NETWORK
    • /
    • v.23 no.6
    • /
    • pp.47.1-47.16
    • /
    • 2023
  • Scrub typhus, a mite-borne infectious disease, is caused by Orientia tsutsugamushi. Despite many attempts to develop a protective strategy, an effective preventive vaccine has not been developed. The identification of appropriate Ags that cover diverse antigenic strains and provide long-lasting immunity is a fundamental challenge in the development of a scrub typhus vaccine. We investigated whether this limitation could be overcome by harnessing the nanoparticle-forming polysorbitol transporter (PST) for an O. tsutsugamushi vaccine strategy. Two target proteins, 56-kDa type-specific Ag (TSA56) and surface cell Ag A (ScaA) were used as vaccine candidates. PST formed stable nano-size complexes with TSA56 (TSA56-PST) and ScaA (ScaA-PST); neither exhibited cytotoxicity. The formation of Ag-specific IgG2a, IgG2b, and IgA in mice was enhanced by intranasal vaccination with TSA56-PST or ScaA-PST. The vaccines containing PST induced Ag-specific proliferation of CD8+ and CD4+ T cells. Furthermore, the vaccines containing PST improved the mouse survival against O. tsutsugamushi infection. Collectively, the present study indicated that PST could enhance both Ag-specific humoral immunity and T cell response, which are essential to effectively confer protective immunity against O. tsutsugamushi infection. These findings suggest that PST has potential for use in an intranasal vaccination strategy.