• Title/Summary/Keyword: disease resistance

Search Result 1,826, Processing Time 0.026 seconds

Pathogenic Diversity of Ascochyta rabiei Isolates and Identification of Resistance Sources in Core Collection of Chickpea Germplasm

  • Farahani, Somayeh;Talebi, Reza;Maleki, Mojdeh;Mehrabi, Rahim;Kanouni, Homayoun
    • The Plant Pathology Journal
    • /
    • v.35 no.4
    • /
    • pp.321-329
    • /
    • 2019
  • Ascochyta blight caused by Ascochyta rabiei (Pass.) Lab. (Telomorph: Didymella rabiei) (Kov.) is one of the most important fungal diseases in chickpea worldwide. Knowledge about pathogen aggressiveness and identification resistance sources to different pathotypes is very useful for proper decisions in breeding programs. In this study, virulence of 32 A. rabiei isolates from different part of Iran were analyzed on seven chickpea differentials and grouped into six races based on 0-9 rating scale and susceptibility/resistant pattern of chickpea differentials. The least and most frequent races were race V and race I, respectively. Race V and VI showed highly virulence on most of differential, while race I showed least aggressiveness. Resistance pattern of 165 chickpea genotypes also were tested against six different A. rabiei races. ANOVA analysis showed high significant difference for isolate, chickpea genotypes and their interactions. Overall $chickpea{\times}isolate$ (race) interactions, 259 resistance responses (disease severity ${\leq}4$) were identified. Resistance spectra of chickpea genotypes showed more resistance rate to race I (49.70%) and race III (35.15%), while there were no resistance genotypes to race VI. Cluster analysis based on disease severity rate, grouped chickpea genotypes into four distinct clusters. Interactions between isolates or races used in this study, showed the lack of a genotype with complete resistance. Our finding for virulence pattern of A. rabiei and newly identified resistance sources could be considerably important for integration of ascochyta blight resistance genes into chickpea breeding programs and proper decision in future for germplasm conservation and diseases management.

Comparison of Resistance Level to Cotton leaf curl virus(CLCuV) Among Newly Developed Cotton Mutants and Commercial Cultivars

  • Akhtar, Khalid P.;Khan, Azeem I.;Hussain, M.;Khan, M.S.I.
    • The Plant Pathology Journal
    • /
    • v.18 no.4
    • /
    • pp.179-186
    • /
    • 2002
  • Four newly developed cotton mutants (M-111, M-7662, M-358 and M-218) were compared for their resistance against Cotton leaf curl virus(CLCuV) together with commercial resistant (CIM-443, CIM-482, CIM-473, FH-900 and FH-901) and susceptible (5-12) varieties by artificial inoculation through grafting and under natural field conditions. Infectivity and success of grafting were 100% in all cases. None of the grafted plants were found immune or asymptomatic. All the grafted mutants and most of their single plant progeny rows (SPPRs) showed highly resistant responses as the symptoms displayed by these mutants were milder than the commercial cultivars. Grafted mutants also had delayed disease reactions as they took more time (25-30 days) to produce disease symptoms, as compared with resistant commercial varieties that produced disease 18-22 days after inoculation. Growth of the grafted SPPRs of tested mutants was normal, which is an indication that there will be no production losses. Observations under natural infestation of whitefly showed that two SPPRs of M-ll/CE and M-7662-1/2 and one resistant variety CIM-443 exhibited slight incidence of disease, while one SPPR of M-l1/59 and S-12 were moderately susceptible and highly susceptible with 21% and 97.l% disease incidence, respectively. This study also showed that plants displaying more disease symptoms through grafting were easily infected under natural conditions. These results suggest that preference should be given to those plants that exhibited highly resistant responses after artificial inoculation.

First isolation of Salmonella I 4,[5],12:i:- from domestic animals in Korea (국내 가축에서 Salmonella I 4,[5],12:i:-의 최초 분리 사례)

  • Lee, Deog-Yong;Kang, Min-Su;Kwon, Yong-Kuk;An, Byung-Ki;Kim, Young-Jo;Heo, Eun-Jeong;Moon, Jin San;Lee, Esther;Park, HyeMin
    • Korean Journal of Veterinary Research
    • /
    • v.52 no.4
    • /
    • pp.285-288
    • /
    • 2012
  • Salmonella I 4,[5],12:i:- was a monophasic variant of Salmonella (S.) Typhimurium and notorious for re-emerging candidate which would replace S. Typhimurium DT104 for antibiotic resistance. Recently, isolation rate was increased on human and industrial animals but there was no case in domestic animals but human in Korea. This was first isolation case from domestic animals in Korea. The five isolates from feces of duck (n = 3), chicken (n = 1), and wild bird (n = 1) showed antibiotic resistance against cephems and aminoglycosides. These means that the spread of emerging bacterial pathogens to domestic animals and the need of systemic management for Salmonella I 4,[5],12:i:-.

Bio-control of Stem Rot in Jerusalem Artichoke (Helianthus tuberosus L.) in Field Conditions

  • Junsopa, Chutsuda;Saksirirat, Weerasak;Saepaisan, Suwita;Songsri, Patcharin;Kesmala, Thawan;Shew, Barbara B.;Jogloy, Sanun
    • The Plant Pathology Journal
    • /
    • v.37 no.5
    • /
    • pp.428-436
    • /
    • 2021
  • Stem rot is a serious disease in Jerusalem artichoke (JA). To reduce the impact of this disease on yield and quality farmers often use fungicides, but this control method can be expensive and leave chemical residues. The objective of this study was to evaluate the efficacy of two biological control agents, Trichoderma harzianum T9 and Bacillus firmus BSR032 for control of Sclerotium rolfsii under field conditions. Four accessions of JA (HEL246, HEL65, JA47, and JA12) were treated or notreated with T. harzianum T9 and B. firmus BSR032 in a 4 × 2 × 2 factorial experiment in two fields (environments), one unfertilized and one fertilized. Plants were inoculated with S. rolfsii and disease was evaluated at 3-day intervals for 46 days. T. harzianum T9 and B. firmus BSR032 reduced disease incidence by 48% and 49%, respectively, whereas T. harzianum T9 + B. firmus BSR032 reduced disease incidence by 37%. The efficacy of T. harzianum T9 and B. firmus BSR032 for control of S. rolfsii was dependent on environments and genotypes. The expression of host plant resistance also depended on the environment. However, HEL246 showed consistently low disease incidence and severity index in both environments (fertilized and unfertilized). Individually, T. harzianum T9, B. firmus BSR032, or host plant resistance control stem rot caused by S. rolfsii in JA. However, no combination of these treatments provided more effective control than each alone.

Cross-resistance of Colletotrichum acutatum s. lat. to Strobilurin Fungicides and Inhibitory Effect of Fungicides with Other Mechanisms on C. acutatum s. lat. Resistant to Pyraclostrobin (Strobilurin계 살균제에 대한 고추탄저병균의 교차저항성과 Pyraclostrobin 저항성균에 대한 다른 기작 살균제의 억제 효과)

  • Park, Subin;Kim, Heung Tae
    • Research in Plant Disease
    • /
    • v.28 no.3
    • /
    • pp.122-131
    • /
    • 2022
  • Colletotrichum acutatum s. lat. 20JDS8 sensitive and 20CDJ6 resistant to pylaclostrobin were used to investigate the cross-resistance with fungicides belonging to the strobilurins and the characteristics of fungicidal controlling activities with different mechanisms against the isolate resistant to the fungicide. The resistant isolate of 20CDJ6 also showed the resistance to azoxystrobin, trifloxystrobin, and kresoxim-methyl, suggesting that there is a cross-resistance relationship. All fungicides with different action mechanisms inhibited mycelial growth of both susceptible and resistant isolates of C. acutatum s. lat., but their disease control effects in fruits were different according to the fungicides. The disease control effect of isopyrazam against 20JDS8 and 20CDJ6 was very low, and fluazinam showed a control effect of 91.9% and 88.1% against 20JDS8 and 20CDJ6 only when it was treated before inoculation by spraying spore suspensions on pepper fruits without wounds. Tebuconazole and prochloraz effectively inhibited not only the mycelial growth of 20JDS8 and 20CDJ6 on potato dextrose agar medium, but also disease incidence in red pepper fruits. As a result of this study, C. acutatum s. lat. 20CDJ6 resistant to pyraclostrobin showed cross-resistance with other strobilurin fungicides. In addition, we think that fluazinam, tebuconazole, and prochloraz can be recommended as alternative fungicides for the control of red-pepper pyranthracnose pathogens resistant pyraclostrobin. However, fluazinam can be effective only if it is treated protectively before the occurrence of the disease.

Disease Resistance-Based Management of Alternaria Black Spot in Cruciferous Crops (병 저항성 기반 십자화과 작물의 검은무늬병 관리)

  • Young Hee Lee;Su Min Kim;Seoung Bin Lee;Sang Hee Kim;Byung-Wook Yun;Jeum Kyu Hong
    • Research in Plant Disease
    • /
    • v.29 no.4
    • /
    • pp.363-376
    • /
    • 2023
  • Alternaria black spots or blights in cruciferous crops have been devastating diseases worldwide and led to economic losses in broccoli, Chinese cabbage, kale, radish, rapeseed, etc. These diseases are caused by different Alternaria spp., including A. brassicae, A. brassicicola and A. raphani transmitted from infected seeds or insect vectors. Efforts to excavate disease resistance traits of cruciferous crops against Alternaria black spots or blights have been demonstrated. Genetic resource of disease resistance was investigated in the wild relatives of cruciferous crops, and different cultivars were screened under different inoculation conditions. Development of the disease-resistant lines against Alternaria black spots or blights was also tried via genetic transformation of the cruciferous crops using diverse plant defence-associated genes. Plant immunity activated by pre-treatment with chemicals, i. e. β-amino-n-butyric acid and melatonin, was suggested for reducing Alternaria black spots or blights in cruciferous crops. The disease resistance traits have also been evaluated in model plant Arabidopsis originating from different habitats. Various plant immunity-related mutants showing different disease responses from wild-type Arabidopsis provided valuable information for managing Alternaria black spots or blights in cruciferous crops. In particular, redox regulation and antioxidant responses altered in the Alternaria-infected mutants were discussed in this review.

Screening of Sclerotinia Rot Resistant Korean Origin Perilla (Perilla frutescens) Germplasm Using a Detached Leaf Method

  • Lee, Ho-Sun;Afroz, Tania;Jeon, Young-Ah;Sung, Jung-Sook;Rhee, Ju-Hee;Aseefa, Awraris Derbie;Noh, Jaejong;Hwang, Aejin;Hur, On-Sook;Ro, Na-Young;Lee, Jae-Eun
    • Korean Journal of Plant Resources
    • /
    • v.32 no.6
    • /
    • pp.743-751
    • /
    • 2019
  • Sclerotinia rot, caused by Sclerotinia sclerotiorum, is a devastating disease that poses a serious threat to perilla production in Korea. Identifying effective sources of resistance offers long term prospects for improving management of this disease. Screening disease resistant genetic resources is important for development of disease-resistant, new cultivars and conduct related research. In the present study, perilla germplasm were screened in vitro against S. sclerotiorum using detached leaf method. Among 544 perilla accessions, two were highly resistant (IT226504, IT226533), five were resistant (IT226561, IT226532, IT226526, IT226441, and IT226589), five were moderately resistant (IT226525, IT226640, IT226568, IT220624, and IT178655), 16 were moderately susceptible, 31 were susceptible, and 485 were highly susceptible. The resistant accessions in this study could serve as resistance donor in the breeding of Sclerotinia rot resistance or subjected to selection procedure of varietal development for direct use by breeders, farmers, researchers, and end consumers.

Induction of systemic resistance in Panax ginseng against Phytophthora cactorum by native Bacillus amyloliquefaciens HK34

  • Lee, Byung Dae;Dutta, Swarnalee;Ryu, Hojin;Yoo, Sung-Je;Suh, Dong-Sang;Park, Kyungseok
    • Journal of Ginseng Research
    • /
    • v.39 no.3
    • /
    • pp.213-220
    • /
    • 2015
  • Background: Korean ginseng (Panax ginseng Meyer) is a perennial herb prone to various root diseases, with Phytophthora cactorum being considered one of the most dreaded pathogens. P. cactorum causes foliar blight and root rot. Although chemical pesticides are available for disease control, attention has been shifted to viable, eco-friendly, and cost-effective biological means such as plant growth-promoting rhizobacteria (PGPR) for control of diseases. Methods: Native Bacillus amyloliquefaciens strain HK34 was isolated from wild ginseng and assessed as a biological control agent for ginseng. Leaves from plants treated with HK34 were analyzed for induced systemic resistance (ISR) against P. cactorum in square plate assay. Treated plants were verified for differential expression of defense-related marker genes using quantitative reverse transcription polymerase chain reaction. Results: A total of 78 native rhizosphere bacilli from wild P. ginseng were isolated. One of the root-associated bacteria identified as B. amyloliquefaciens strain HK34 effectively induced resistance against P. cactorum when applied as soil drench once (99.1% disease control) and as a priming treatment two times in the early stages (83.9% disease control). A similar result was observed in the leaf samples of plants under field conditions, where the percentage of disease control was 85.6%. Significant upregulation of the genes PgPR10, PgPR5, and PgCAT in the leaves of plants treated with HK34 was observed against P. cactorum compared with untreated controls and only pathogen-treated plants. Conclusion: The results of this study indicate HK34 as a potential biocontrol agent eliciting ISR in ginseng against P. cactorum.

Screening Resistance to Crown Gall Disease by Pathogen Inoculation in Muscadine and Florida Hybrid Grapes (병원균 접종에 의한 Muscadine 및 플로리다 교잡종 포도의 줄기혹병 저항성 검정)

  • Noh, Jung-Ho;Park, Kyo-Sun;Lu, Jiang;Yun, Hae-Keun
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.3
    • /
    • pp.497-507
    • /
    • 2015
  • It is necessary to evaluate the resistance to disease among genetic resources for development of disease resistant grapes. This study was conducted to screen the resistance to crown gall in muscadine and Florida hybrid bunch grapes by pathogen inoculation. In order to compare the responses to infection with different pathogen strains, muscadine and Florida hybrid grapes were inoculated with 3 strains of Agrobacterium vitis. Although there were different levels crown gall formation among grape cultivars, there little variation in response to inoculated strains. Among 29 muscadine cultivars tested by inoculation of A. vitis 'C4612', most of them were shown to be susceptible, and 'Gold Isle' and 'Africa Queen' were highly susceptible, and two cultivars, 'Welder' and 'Jumbo' were found to be resistant to crown gall disease. Among Florida hybrid grapes, 'Daytona', 'Stover', and 'Swanee' were susceptible and 'Blanc du Bois' was moderately susceptible to crown gall. Because muscadine grapes have been actively utilized as useful genetic resources for development of new grape varieties by intersub-genus cross, this result from the screening of resistance among muscadine grapes can provide valuable information in breeding programs of grape resistant to crown gall.

Effects of Medicinal Herb Extracts of Artemisia iwayomogi Kitamura and Angelica gigas Nakai on Disease Resistance in Olive Flounder Paralichthys olivaceus (한인진(Artemisia iwayomogi Kitamura)과 참당귀(Angelica gigas Nakai) 추출물이 넙치(Paralichthys olivaceus) 항병력에 미치는 영향)

  • Kim, Na Young;Lee, Nam-Sil;Jeon, Eun Ji;Seo, Jung Soo;Woo, Soo Ji;Kim, Myung Sug;Kang, So Young;Jung, Sung Hee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.5
    • /
    • pp.634-643
    • /
    • 2021
  • Han In-jin (Artemisia iwayomogi Kitamura) and Cham Dang-gwi (Angelica gigas Nakai) exhibit antibacterial, antiparasitic, antifungal, and antiviral properties in vitro. In this study, mixture of the extracts of these two medicinal plants was absorbed on pellets. Thereafter, these pellets were fed to olive flounder Paralichthys olivaceus for 12 weeks at laboratory (1st experiment) and 24 weeks at field test (2nd experiment), and the immune activity and disease resistance properties of the extracts were examined. It was observed that lysozyme activities of plasma, spleen, and kidney improved after 12 weeks. Furthermore, when the olive flounders were artificially infected with bacterial pathogens, their cumulative mortality decreased in the group that was fed the extracts for 12 weeks compared to that in control group, and the relative percent survival also improved. This study concluded that mixture of Han In-jin and Cham Dang-gwi extracts provides disease resistance in vivo.