• 제목/요약/키워드: disease resistance

검색결과 1,809건 처리시간 0.04초

The Role of Inflammatory Mediators in the Pathogenesis of Nonalcoholic Fatty Liver Disease

  • Kim, Joon Sung
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제15권2호
    • /
    • pp.74-78
    • /
    • 2012
  • With a markedly increased prevalence of obesity, non-alcoholic fatty liver disease (NAFLD) now becomes the most common cause of chronic liver disease in both adults and children. The etiology and pathogenesis of NAFLD are multifactorial and remain incompletely understood. According to the "two-hit" theory, inflammatory cytokines and adipokines are activated by oxidative stress and they are involved in insulin resistance, necroinflammatory steatohepatitis and fibrosis. This review discusses the latest updates on the role of some of important inflammatory adipokines and cytokines in the pathogenesis of NAFLD with an emphasis on their potential therapeutic implications.

Induced Systemic Resistance and the Rhizosphere Microbiome

  • Bakker, Peter A.H.M.;Doornbos, Rogier F.;Zamioudis, Christos;Berendsen, Roeland L.;Pieterse, Corne M.J.
    • The Plant Pathology Journal
    • /
    • 제29권2호
    • /
    • pp.136-143
    • /
    • 2013
  • Microbial communities that are associated with plant roots are highly diverse and harbor tens of thousands of species. This so-called microbiome controls plant health through several mechanisms including the suppression of infectious diseases, which is especially prominent in disease suppressive soils. The mechanisms implicated in disease suppression include competition for nutrients, antibiosis, and induced systemic resistance (ISR). For many biological control agents ISR has been recognized as the mechanism that at least partly explains disease suppression. Implications of ISR on recruitment and functioning of the rhizosphere microbiome are discussed.

인삼 육성계통의 Fusarium sozani에 의한 근부병 저항성 비교 (Comparison of Resistance of Root Rot Caused by Fusarium solani in Ginseng Breeding Lines)

  • 천성룡;김홍진
    • Journal of Ginseng Research
    • /
    • 제14권1호
    • /
    • pp.50-56
    • /
    • 1990
  • Root-rot of ginseng caused by Fusarium solani is one of the most obstacles to ginseng cultivation. We evaluated some inoculating techniques of ginseng with Fusarium solani, for selection of disease resistant breeding lines. The most effective inoculating techniques evaluated were inserting toothpicks colonized by F. solani into the seedling roots in laboratory test and dusting seedlings with vermiculite after dipping in conidial sllspension and then replanting method in field test. The resistance to diseased by F. solani was lines of 82022 and 82066 in laboratory test. 82920-1 and 78093 in field test.

  • PDF

Identification of Genes Related to Fungicide Resistance in Fusarium fujikuroi

  • Choi, Younghae;Jung, Boknam;Li, Taiying;Lee, Jungkwan
    • Mycobiology
    • /
    • 제45권2호
    • /
    • pp.101-104
    • /
    • 2017
  • We identified two genes related to fungicide resistance in Fusarium fujikuroi through random mutagenesis. Targeted gene deletions showed that survival factor 1 deletion resulted in higher sensitivity to fungicides, while deletion of the gene encoding F-box/WD-repeat protein increased resistance, suggesting that the genes affect fungicide resistance in different ways.

A comparison of individual and combined $_L$-phenylalanine ammonia lyase and cationic peroxidase transgenes for engineering resistance in tobacco to necrotrophic pathogens

  • Way, Heather M.;Birch, Robert G.;Manners, John M.
    • Plant Biotechnology Reports
    • /
    • 제5권4호
    • /
    • pp.301-308
    • /
    • 2011
  • This study tested the relative and combined efficacy of ShPx2 and ShPAL transgenes by comparing Nicotiana tabacum hybrids with enhanced levels of $_L$-phenylalanine ammonia lyase (PAL) activity and cationic peroxidase (Prx) activity with transgenic parental lines that overexpress either transgene. The PAL/Prx hybrids expressed both transgenes driven by the 35S CaMV promoter, and leaf PAL and Prx enzyme activities were similar to those of the relevant transgenic parent and seven- to tenfold higher than nontransgenic controls. Lignin levels in the PAL/Prx hybrids were higher than the PAL parent and nontransgenic controls, but not significantly higher than the Prx parent. All transgenic plants showed increased resistance to the necrotrophs Phytophthora parasitica pv. nicotianae and Cercospora nicotianae compared to nontransgenic controls, with a preponderance of smaller lesion categories produced in Prx-expressing lines. However, the PAL/Prx hybrids showed no significant increase in resistance to either pathogen relative to the Prx parental line. These data indicate that, in tobacco, the PAL and Prx transgenes do not act additively in disease resistance. Stacking with Prx did not prevent a visible growth inhibition from PAL overexpression. Practical use of ShPAL will likely require more sophisticated developmental control, and we conclude that ShPx2 is a preferred candidate for development as a resistance transgene.

Predictive factors of resistance to intravenous immunoglobulin and coronary artery lesions in Kawasaki disease

  • Lee, Hye Young;Song, Min Seob
    • Clinical and Experimental Pediatrics
    • /
    • 제59권12호
    • /
    • pp.477-482
    • /
    • 2016
  • Purpose: We conducted a study to determine which factors may be useful as predictive markers in identifying Kawasaki disease (KD) patients with a high risk of resistance to intravenous immunoglobulin (IVIG) and developing coronary artery lesions (CAL). Methods: We enrolled 287 patients in acute phase of KD at a single center. The demographic, clinical and laboratory data were collected retrospectively. Results: There were 34 patients in the IVIG resistant group. The IVIG resistant group had significantly higher serum N-terminal-pro-brain natriuretic protein (NT-proBNP) levels (P<0.01) and polymorphonuclear neutrophil (PMN) percentage (P<0.01) in comparison to the IVIG responders. The results yielded sensitivity (78.8%, 60.6%), specificity (58.2%, 90%) and cutoff value (628.6 pg/mL, 80.3%) of NT-proBNP and PMN respectively, in predicting IVIG resistance. Despite IVIG administration, 13 of the 287 patients developed CAL. The patients in the CAL group had higher NT-proBNP levels (P<0.01) and higher PMN percentage (P<0.01). In these patients, the results yielded sensitivity (73.3%, 56.7%), specificity (67.9%, 88.9%) and cutoff value (853.4 pg/mL, 80.3%) of NT-proBNP and PMN respectively, for predicting CAL. The area under the curve (AUC) for predicting resistance to IVIG was NT-proBNP 0.712, PMN 0.802. The AUC for predicting CAL was NT-proBNP 0.739, and PMN 0.773. Conclusion: Serum NT-proBNP levels and PMN percentage were significantly elevated in patients with KD with IVIG resistance and CAL. Thus, they may be useful predicting markers for IVIG resistance and development of CAL in KD patients.

Stable Expression of TMV Resistance and Responses to Major Tobacco Diseases in the Fifth Generation of TMV CP Transgenic Tobacco

  • Park, Seong-Weon;Lee, Ki-Won;Lee, Cheong-Ho;Kim, Sang-Seock;Park, Eun-Kyung;Choi, Soon-Yong
    • 한국연초학회지
    • /
    • 제20권1호
    • /
    • pp.66-70
    • /
    • 1998
  • TMV resistant lines (TRLs) originated from the Blo plant of Nicotiana tabacum cv. NC82 transformed with TMV coat protein cDNA which initially showed delayed disease symptom were selected for increased resistance in each subsequent generation. The result of field experiment of the transgenic tobacco lines in the fifth generation for TMV resistance and their response to other tobacco diseases (black shank, bacterial wilt, and powdery mildew) is described in this report. When fifteen TRLs of the fifth generation were tested for TMV resistance by mechanically inoculating the individual plants, over 95 percent of the plants of 6 lines showed complete resistance even 8 weeks after the inoculation. Average frequency of the resistant plants in TRLs of the fifth generation 8 weeks after the inoculation was 87%. Stable insertion and expression of TMV coat protein cDNA in the fifth generation of the transgenic tobacco plant were confirmed by PCR and immunoblot hybridization, respectively. All TRLs were resistant to the black shank but were susceptible to the bacterial wilt disease and the powdery mildew to the same degree as non-transgenic NC82 was. Therefore, it was indicated that the phenotypes related at least to disease resistance were not changed in the transgenic tobacco. Key words : TMV CP cDNA, TMV resistant tobacco plant, transformation.

  • PDF

세포벽의 형태학적 변화와 ABC Transporter에 기초한 벼키다리병원균 Fusarium fujikuroi CF337의 살균제 prochloraz에 대한 저항성 반응 (Morphological Changes of Fungal Cell Wall and ABC Transporter as Resistance Responses of Rice Bakanae Disease Pathogen Fusarium fujikuroi CF337 to Prochloraz)

  • 양유리;이시우;이세원;김인선
    • 한국환경농학회지
    • /
    • 제31권1호
    • /
    • pp.30-36
    • /
    • 2012
  • BACKGROUND: The resistance of rice bakanae disease pathogens against the fungicide prochloraz has been reported. Understanding the resistance mechanisms is an important for better control of the pathogens. In the present study, we investigated the resistance mechanisms of Fusarium fujikuroi CF337 (CF337) against prochloraz. METHODS AND RESULTS: Morphological changes in the cell wall of CF337 grown in potato dextrose broth (PDB) with or without prochloraz was investigated by transmission electron microscopy. Growth inhibition of CF337 was examined in PDB containing prochloraz or an ABC transporter inhibitor or both of them. Cell wall thickness of CF337 grown in PDB with prochloraz was significantly increased from $80.73{\pm}1.99nm$ to $193.11{\pm}7.07nm$. Significant inhibition in the growth of CF337 was observed in the presence of both prochloraz and the inhibitor, but no growth inhibition was observed in the presence of the inhibitor or prochloraz. Sequence analysis of ATP-binding cassette transporter (ABC) gene of CF337 showed 70 to 80% similarities to the genes of the pathogens resistant to other fungicides. CONCLUSION: Efflux transporter system and changes in cell wall thickness were suggested as resistance mechanisms of CF337 against prochloraz.

Cyclic Dipeptides from Bacillus vallismortis BS07 Require Key Components of Plant Immunity to Induce Disease Resistance in Arabidopsis against Pseudomonas Infection

  • Noh, Seong Woo;Seo, Rira;Park, Jung-Kwon;Manir, Md. Maniruzzaman;Park, Kyungseok;Sang, Mee Kyung;Moon, Surk-Sik;Jung, Ho Won
    • The Plant Pathology Journal
    • /
    • 제33권4호
    • /
    • pp.402-409
    • /
    • 2017
  • Cyclic dipeptides (CDPs) are one of the simplest compounds produced by living organisms. Plant-growth promoting rhizobacteria (PGPRs) also produce CDPs that can induce disease resistance. Bacillus vallismortis strain BS07 producing various CDPs has been evaluated as a potential biocontrol agent against multiple plant pathogens in chili pepper. However, plant signal pathway triggered by CDPs has not been fully elucidated yet. Here we introduce four CDPs, cyclo(Gly-L-Pro) previously identified from Aspergillus sp., and cyclo(L-Ala-L-Ile), cyclo(L-Ala-L-Leu), and cyclo(L-Leu-L-Pro) identified from B. vallismortis BS07, which induce disease resistance in Arabidopsis against Pseudomonas syringae infection. The CDPs do not directly inhibit fungal and oomycete growth in vitro. These CDPs require PHYTOALEXIN DEFICIENT4, SALICYLIC ACID INDUCTION DEFICIENT2, and NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 important for salicylic acid-dependent defense to induce resistance. On the other hand, regulators involved in jasmonate-dependent event, such as ETHYLENE RECEPTOR1, JASMONATE RESPONSE1, and JASMONATE INSENSITIVE1, are necessary to the CDP-induced resistance. Furthermore, treatment of these CDPs primes Arabidopsis plants to rapidly express PATHOGENESIS-RELATED PROTEIN4 at early infection phase. Taken together, we propose that these CDPs from PGPR strains accelerate activation of jasmonate-related signaling pathway during infection.

Differential Resistance of Radish Cultivars against Bacterial Soft Rot Caused by Pectobacterium carotovorum subsp. carotovorum

  • Soo Min Lee;Jin Ju Lee;Hun Kim;Gyung Ja Choi
    • The Plant Pathology Journal
    • /
    • 제40권2호
    • /
    • pp.151-159
    • /
    • 2024
  • Bacterial soft rot caused by Pectobacterium carotovorum subsp. carotovorum (Pcc) is one of the most severe diseases in radish cultivation. To control this plant disease, the most effective method has been known to cultivate resistant cultivars. Previously, we developed an efficient bioassay method for investigating resistance levels with 21 resistant and moderately resistant cultivars of radish against a strain Pcc KACC 10421. In this study, our research expanded to investigate the resistance of radish cultivars against six Pcc strains, KACC 10225, KACC 10421, ATCC 12312, ATCC 15713, LY34, and ECC 301365. To this end, the virulence of the six Pcc strains was determined based on the development of bacterial soft rot in seedlings of four susceptible radish cultivars. The results showed that the Pcc strains exhibited different virulence in the susceptible cultivars. To explore the race differentiation of Pcc strains corresponding to the resistance in radish cultivars, we investigated the occurrence of bacterial soft rot caused by the six Pcc strains on the 21 resistant and moderate resistant cultivars. Our results showed that the average values of the area under the disease progress curve were positively correlated with the virulence of the strains and the number of resistant cultivars decreased as the virulence of Pcc strains increased. Taken together, our results suggest that the resistance to Pcc of the radish cultivars commercialized in Korea is more likely affected by the virulence of Pcc strains rather than by race differentiation of Pcc.