• Title/Summary/Keyword: discrete shear

Search Result 190, Processing Time 0.029 seconds

Why Are Cool Structures in the Universe Usually Filamentary?

  • Song, Inhyeok;Choe, Gwang Son;Yi, Sibaek;Jun, Hongdal
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.48.4-48.4
    • /
    • 2019
  • Small-scale shear flows are ubiquitous in the universe, and astrophysical plasmas are often magnetized. We study the thermal condensation instability in magnetized plasmas with shear flows in relation to filamentary structure formation in cool structures in the universe, representatively solar prominences and supernova remnants. A linear stability analysis is extensively performed in the framework of magnetohydrodynamics (MHD) with radiative cooling, plasma heating and anisotropic thermal conduction to find the eigenfrequencies and eigenfunctions for the unstable modes. For a shear velocity less than the Alfven velocity of the background plasma, the eigenvalue with the maximum growth rate is found to correspond to a thermal condensation mode, for which the density and temperature variations are anti-phased (of opposite signs). Only when the shear velocity in the k-direction is near zero, the eigenfunctions for the condensation mode are of smooth sinusoidal forms. Otherwise each eigenfunction for density and temperature is singular and of a discrete form like delta functions. Our results indicate that any non-uniform velocity field with a magnitude larger than a millionth of the Alfven velocity can generate discrete eigenfunctions of the condensation mode. We therefore suggest that condensation at discrete layers or threads should be quite a natural and universal process whenever a thermal instability arises in magnetized plasmas.

  • PDF

Numerical simulation and experimental investigation of the shear mechanical behaviors of non-persistent joint in new shear test condition

  • Wang, Dandan;Zhang, Guang;Sarfarazi, Vahab;Haeri, Hadi;Naderi, A.A.
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.239-255
    • /
    • 2020
  • Experimental and discrete element method were used to investigate the effects of joint number and its angularities on the shear behaviour of joint's bridge area. A new shear test condition was used to model the gypsum cracks under shear loading. Gypsum samples with dimension of 120 mm×100 mm×50 mm were prepared. the length of joints was 2cm. in experimental tests, the joint number is 1, 2 and 3 and its angularities change from 0° to 90° with increment of 45°. Assuming a plane strain condition, special rectangular models are prepared with dimension of 120 mm×100 mm. similar to joints configuration in experimental test, 9 models with different joint number and joint angularities were prepared. This testing show that the failure process is mostly governed by the joint number and joint angularities. The shear strengths of the specimens are related to the fracture pattern and failure mechanism of the discontinuities. The shear behaviour of discontinuities is related to the number of induced tensile cracks which are increased by increasing the rock bridge length. The strength of samples decreases by increasing the joint number and joint angularities. Failure pattern and failure strength are similar in both of the experimental test and numerical simulation.

Shear strength characteristics of composite reinforced soils (복합보강토의 전단강도 특성)

  • Chang, Pyoung-Wuck;Cha, Kyung-Seob;Park, Young-Kon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.333-336
    • /
    • 2002
  • Traditional methods of earth reinforcement consist of introducing strips, fabrics, or grids into an earth mass. Recently, discrete fibers are simply added and mixed with the soil, much the same as cement, lime or other additives. The advantages of randomly distributed fibers is the maintenance of strength isotropy, low decrease in post-peak shear strength and high stability at failure. In this study, new composite reinforcement structures which consist of geotextile and randomly distributed discrete fibers were examined their engineering properties, such as shear strength of the composite reinforced soil. The increments of shear strength of composite reinforced soils were the sum of increments by fiber and woven geotextile respectively.

  • PDF

Deflection of battened beams with shear and discrete effects

  • Li, Ji-liang;Chen, Jian-kang
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.921-932
    • /
    • 2016
  • This paper presents a theoretical analysis for determining the transverse deflection of simply supported battened beams subjected to a uniformly distributed transverse quasi-static load. The analysis considers not only the shear effect but also the discrete effect of battens on the transverse deflection of the battened beam. The analytical solution is obtained using the principle of minimum potential energy. Numerical validation of the present analytical solution is accomplished using finite element methods. The present analytical solution shows that the shear effect on the transverse deflection of battened beams increases with the cross-section area of the main member but decreases with the cross-section area of the batten. The longer the battened beam is, or the larger the moment of inertia of the main member is, the smaller the shear effect will be.

Application of Laboratory Pressurized Vane Shear Test and Discrete Element Method for Determination of Foam-conditioned Soil Properties (폼제에 의해 개선된 흙의 물성 도출을 위한 실내 가압 베인 전단시험 및 개별요소법의 적용)

  • Kang, Tae-Ho;Lee, Hyobum;Choi, Hangseok;Choi, Soon-Wook;Chang, Soo-Ho;Lee, Chulho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.65-74
    • /
    • 2020
  • In earth pressure balance (EPB) shield TBM tunnelling, the application of soil conditioning which improves properties of the excavated muck by additives injection, is generally used for enhancing the performance of TBM. Therefore it is important to apply the soil conditioning in the numerical model which simulates excavation performance of TBM equipment, but related studies on a method that simulates soil conditioning are insufficient to date. Accordingly, in this study, an laboratory pressurized vane test apparatus was devised to evaluate the characteristics of conditioned soil. Using the apparatus, the vane shear tests were performed on foam-conditioned soil with different shear rates, and the test was numerically simulated with discrete element method (DEM). Finally, the contact properties of particles in DEM were determined by comparing the results of test and analysis, and it indicates that the applicability of pressurized vane test and DEM model for reproducing soil conditioning in TBM excavation model with DEM.

Characteristics of Shear Behavior According to State of Particle Bonding and Crushing (입자 결합 및 파쇄 형태에 따른 전단거동 특성)

  • Jeong, Sun-Ah;Kim, Eun-Kyung;Lee, Seok-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.1-12
    • /
    • 2011
  • In order to analyze the influence of particle bonding and crushing on the characteristics of shear behavior, especially residual shear behavior of granular soil, ring shear test was simulated by using DEM(Discrete Element Method)-based software program PFC(Particle Flow Code). Total four models including two non-crushing models and two crushing models were created in this study by using clump or cluster model built in PFC. The applicability of Lobo-crushing model proposed by Lobo-Guerrero and Vallejo(2005) was investigated. In addition, the results of ring shear test were analyzed and compared with those of direct shear test. The results showed that the modelling of ring shear test should be conducted to investigate the residual shear behavior. The Lobo-crushing model cannot be applied to investigate the residual shear strength. Finally, it can be concluded that the numerical models excluding Lobo-crushing model suggested in this study can be used extensively for other studies concerning the residual shear behavior of granular soil including soil crushing.

Thermal vibration analysis of thick laminated plates by the moving least squares differential quadrature method

  • Wu, Lanhe
    • Structural Engineering and Mechanics
    • /
    • v.22 no.3
    • /
    • pp.331-349
    • /
    • 2006
  • The stresses and deflections in a laminated rectangular plate under thermal vibration are determined by using the moving least squares differential quadrature (MLSDQ) method based on the first order shear deformation theory. The weighting coefficients used in MLSDQ approximation are obtained through a fast computation of the MLS shape functions and their partial derivatives. By using this method, the governing differential equations are transformed into sets of linear homogeneous algebraic equations in terms of the displacement components at each discrete point. Boundary conditions are implemented through discrete grid points by constraining displacements, bending moments and rotations of the plate. Solving this set of algebraic equations yields the displacement components. Then substituting these displacements into the constitutive equation, we obtain the stresses. The approximate solutions for stress and deflection of laminated plate with cross layer under thermal load are obtained. Numerical results show that the MLSDQ method provides rapidly convergent and accurate solutions for calculating the stresses and deflections in a multi-layered plate of cross ply laminate subjected to thermal vibration of sinusoidal temperature including shear deformation with a few grid points.

Experimental shear strengthening of GFRC beams without stirrups using innovative techniques

  • Hany, Marwa;Makhlouf, Mohamed H.;Ismail, Gamal;Debaiky, Ahmed S.
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.415-433
    • /
    • 2022
  • Eighteen (18) (120×300×2200 mm) beams were prepared and tested to evaluate the shear strength of Glass Fiber Reinforced Concrete (GFRC) beams with no shear reinforcement, and evaluate the effectiveness of various innovative strengthening systems to increase the shear capacity of the GFRC beams. The test variables are the amount of discrete glass fiber (0.0, 0.6, and 1.2% by volume of concrete) and the type of longitudinal reinforcement bars (steel or GFRP), the strengthening systems (externally bonded (EB) sheet, side near-surface mounted (SNSM) bars, or the two together), strengthening material (GFRP or steel) links, different configurations of NSM GFRP bars (side bonded links, full wrapped stirrups, side C-shaped stirrups, and side bent bars), link spacing, link inclination angle, and the number of bent bars. The experimental results showed that adding the discrete glass fiber to the concrete by 0.6%, and 1.2% enhanced the shear strength by 18.5% and 28%, respectively in addition to enhancing the ductility. The results testified the efficiency of different strengthening systems, where it is enhanced the shear capacity by a ratio of 28.4% to 120%, and that is a significant improvement. Providing SNSM bent bars with strips as a new strengthening technique exhibited better shear performance in terms of crack propagation, and improved shear capacity and ductility compared to other strengthening techniques. Based on the experimental shear behavior, an analytical study, which allows the estimation of the shear capacity of the strengthened beams, was proposed, the results of the experimental and analytical study were comparable by a ratio of 0.91 to 1.15.

Evolution of Particle Crushing and Shear Behavior with Respect to Particle Shape Using PFC (PFC를 이용한 입자 형상에 따른 입자 파쇄 및 전단거동 전개)

  • Jo, Seon-Ah;Cho, Gye-Chun;Lee, Seok-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.41-53
    • /
    • 2009
  • In order to analyze the influence of particle shape on evolution of particle crushing and characteristic of shear behavior of granular soil, direct shear test was simulated by using DEM (Discrete Element Method). Six particle shapes were generated by clump and cluster model built in PFC (Particle Flow Code). The results of direct shear test for six particle shapes were compared and analyzed with those for circular particle shape. The results of numerical tests showed a good agreement with those of experimental tests, thus the appropriateness of numerical modelling set in this study was proved. As for particle shape, more angular and rougher particle induced larger internal friction angle and more particle crushing than relatively round and smooth particle. When particles were crushed, crushing was concentrated on the shear band adjacent to the shear plane. Finally, it can be concluded that the numerical models suggested in this study can be used extensively for other studies concerning the shear behavior of granular soil including soil crushing.

DEM analyses of the mechanical behavior of soil and soil-rock mixture via the 3D direct shear test

  • Xu, Wen-Jie;Li, Cheng-Qing;Zhang, Hai-Yang
    • Geomechanics and Engineering
    • /
    • v.9 no.6
    • /
    • pp.815-827
    • /
    • 2015
  • The mechanical behavior of soil and soil-rock mixture is investigated via the discrete element method. A non-overlapping combination method of spheres is used to model convex polyhedron rock blocks of soil-rock mixture in the DEM simulations. The meso-mechanical parameters of soil and soil-rock interface in DEM simulations are obtained from the in-situ tests. Based on the Voronoi cell, a method representing volumtric strain of the sample at the particle scale is proposed. The numerical results indicate that the particle rotation, occlusion, dilatation and self-organizing force chains are a remarkable phenomena of the localization band for the soil and soil-rock mixture samples. The localization band in a soil-rock mixture is wider than that in the soil sample. The current research shows that the 3D discrete element method can effectively simulate the mechanical behavior of soil and soil-rock mixture.