• Title/Summary/Keyword: discrete optimum design

Search Result 150, Processing Time 0.024 seconds

Discrete Optimum Design of Sinusoidal Corrugated Web Girder (사인형 주름웨브보의 이산화 최적구조설계)

  • Shon, Su Deok;Yoo, Mi Na;Lee, Seung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.671-682
    • /
    • 2012
  • The use of sinusoidal corrugated web girder for the box-type girders and gable steel main frames has recently been increasing very much. The reasons are that the thin web of the girder affords a significant weight reduction compared with rolled beam and welded built-up girder, and that corrugation prevents the buckling failure of the web. Improvements of the automatic fabrication process makes mass production of the corrugated web and unit possible, and applications of this girder have been extended considerably. Thus, the research for the optimum design processer considering the production data is needed practically. For doing this research, we develope the discrete optimum structural design program in consideration of production list data for the research, and the program apply to the single girder under the uniform load and the concentrated load as numerical example. We consider objective function as minimum weight of the girder, and use slenderness ratio, stress of flanges and corrugated web, and the girder deflection as the constraint functions. And also the Genetic Algorithms is adopted to search the global minimum point by using the production list as a discrete design variable. Finally, to verify the optimality of the design, we conduct a comparison of the results of the discrete optimum design with those of the continuous one, and also analyze the characteristics of the optimum cross-section.

Optimum RC Member Design with Predetermined Discrete Sections (단면 데이타 베이스에 의한 RC 부재의 최적설계)

  • 최창근;곽효경
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1988.10a
    • /
    • pp.55-60
    • /
    • 1988
  • This paper concentrates on the development of simplified and effective algorithm for optimum reinforced concrete(RC) member design. After constructing the data base of predetermined RC sections which are arranged in the order of increasing resistant capacity. Then, the relationship between the section identification numbers and resistant capacities of sections is estabilished by regression and it can be used to obtain the initial solution(section) which satisfies the design constraints imposed. Assuming that there exists the optimum section near the initially selected one, the direct search is conducted to find the discrete optimum solution. The optimization of the entire structure is accomplished through the individual member optimization.

  • PDF

Optimum Design of Multi-Stage Gear Drive Using Genetic Algorithm Mixed Binary and Real Encoding (이진코딩과 실수코딩이 조합된 유전 알고리즘을 이용한 다단 기어장치의 최적설계)

  • 정태형;홍현기;이정상
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.118-123
    • /
    • 2004
  • In this study, genetic algorithm mixed binary and real encoding is proposed to deal with design variables of various types. And that is applied to optimum design of Multi-stage gear drive. Design of pressure vessel which is mixed discrete and continuous variables is applied to verify reasonableness of proposed genetic algorithm. The proposed genetic algorithm is applied for the gear ratio optimization and the volume minimization of geared motor which is used in field. In result, it shows that the volume has decreased about 8% compared with the existing geared motor.

  • PDF

Oscillation Phenomena of the discrete Optimum Solutions and control (불연속 최적해의 흔들림 현상과 제어에 관한 연구)

  • Choi, Chang-Koon;Jin, Ho-Kyun;Kim, Jong-Soo;Lee, Hwan-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.9-16
    • /
    • 1994
  • In the discrete optimum design, occasionally, the solutions oscillate between the feasible and the infeasible resions during the series of redesigns of members with discrete sections. This phenomenon may be caused inherently by the discontinuity of variables of commercially available sections in the database. In this paper, in-depth investigation into the oscillation in the discrete optimization and its control has been conducted. When the structure is optimized through element optimization, the oscillation can be divided into two categories, local and global oscillations. An algorithm which controls these phenomena is suggested and numerical examples demonstrate the oscillation in optimum solutions and the effectiveness of the control strategy suggested here.

  • PDF

Approximate discrete variable optimization of plate structures using dual methods

  • Salajegheh, Eysa
    • Structural Engineering and Mechanics
    • /
    • v.3 no.4
    • /
    • pp.359-372
    • /
    • 1995
  • This study presents an efficient method for optimum design of plate and shell structures, when the design variables are continuous or discrete. Both sizing and shape design variables are considered. First the structural responses such as element forces are approximated in terms of some intermediate variables. By substituting these approximate relations into the original design problem, an explicit nonlinear approximate design task with high quality approximation is achieved. This problem with continuous variables, can be solved by means of numerical optimization techniques very efficiently, the results of which are then used for discrete variable optimization. Now, the approximate problem is converted into a sequence of second level approximation problems of separable form and each of which is solved by a dual strategy with discrete design variables. The approach is efficient in terms of the number of required structural analyses, as well as the overall computational cost of optimization. Examples are offered and compared with other methods to demonstrate the features of the proposed method.

On the Preliminary Design of Marine Propellers by Lifting Line Theory (양력선(揚力線) 이론(理論)에 의한 추진기(推進器) 초기설계(初期設計)에 대하여)

  • Jin-Tae,Lee;Zae-Geun,Kim;Chang-Sup,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.17 no.3
    • /
    • pp.5-17
    • /
    • 1980
  • A basic procedure to design marine propellers by a curved lifting line theory was shown. By adapting discrete singularity method, it became possible to take into account of skew, rake and the contraction of slip stream in the early stage of preliminary design procedure. It is also shown that lifting line theory based on the discrete singularity method converges to a common solution obtained by induction factor method with a relatively small number of discrete elements. Lifting the blade geometry more accurately on the basis of hydrodynamic principles. A number of numerical results from lifting line calculation are presented for the purpose of comparison with the previous method, and with these results two sample designs are carried out, which are wake-adapted optimum and wake-adapted non-optimum propellers.

  • PDF

Optimum Design of Steel Structures Using Genetic Algorithms (유전자 알고리즘을 사용한 강구조물의 최적설계)

  • Kim, Bong Ik
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.701-710
    • /
    • 2012
  • We present optimum design for truss and frame structures subject to constraints on stresses, displacement, and natural frequency. The optimum design procedure is used discrete and continuous design variables and Genetic Algorithms. Genetic Algorithms is used the method of Elitism and penalty parameters in order to improved fitness in the reproduction process, and optimum design is used steel(W-section) and pre-made discrete cross-section. Truss and frame structures optimization examples are used for 10-Bar truss, 25-Bar truss, 1-bay 2-story frame, 1-bay 7-story frame, and these examples are employed to demonstrate the availability and serviceability of Genetic Algorithms for solving optimum design of truss and frame.

Design of Steel Frames using Plastic Hinge Analysis (소성힌지해석을 이용한 강골조 시스템의 설계)

  • Chang, Chun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.131-140
    • /
    • 2004
  • The main objective of the research is to develop an algorithm for the optimum design of two dimensional steel frames using refined plastic hinge analysis which considers material and geometrical nonlinearities. Using developed algorithm, an optimum design was perform without calculating an effective length factor of the column (K-factor). A multi-level discrete optimization technique with two parameters has been developed and employed in the optimum design algorithm. The optimization algorithm is applied to structural design with the objective of minimizing the weight of a structure and with constraints on load limit, frame drift, ductility. Various application example is provided to demonstrate the feasibility, validity and efficiency of the developed program.

Optimal Plastic Design of Planar Frames (평면(平面) Frame의 최적소성설계(最適塑性設計))

  • S.J.,Yim;S.H.,Hwang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.17 no.2
    • /
    • pp.1-10
    • /
    • 1980
  • The optimal plastic design of framed structures has been treated as the minimum weight design while satisfying the limit equilibrium condition that the structure may not fail in any of the all possible collapse modes before the specified design ultimate load is reached. Conventional optimum frame designs assume that a continuous spectrum of member size is available. In fact, the vailable sections merely consist of a finite range of discrete member sizes. Optimum frame design using discrete sections has been performed by adopting the plastic collapse theory and using the Complex Method of Box. This study has presented an iterative approach to the optimal plastic design of plane structures that involves the performance of a series of minimum weight design where the limit equilibrium equation pertaining to the critical collapse mode is added to the constraint set for the next design. The critical collapse mode is found by the collapse load analysis that is formulated as a linear programming problem. This area of research is currently being studied. This study would be applied and extended to design the larger and more complex framed structures.

  • PDF

Development of an Optimization Algorithm Using Orthogonal Arrays in Discrete Design Space (직교배열표를 이용한 이산공간에서의 최적화 알고리듬 개발)

  • Lee, Jeong-Uk;Park, Jun-Seong;Lee, Gwon-Hui;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1621-1626
    • /
    • 2001
  • The structural optimization have been carried out in the continuous design space or in the discrete design space. Methods fur discrete variables such as genetic algorithms , are extremely expensive in computational cost. In this research, an iterative optimization algorithm using orthogonal arrays is developed for design in discrete space. An orthogonal array is selected on a discrete des inn space and levels are selected from candidate values. Matrix experiments with the orthogonal array are conducted. New results of matrix experiments are obtained with penalty functions leer constraints. A new design is determined from analysis of means(ANOM). An orthogonal array is defined around the new values and matrix experiments are conducted. The final optimum design is found from iterative process. The suggested algorithm has been applied to various problems such as truss and frame type structures. The results are compared with those from a genetic algorithm and discussed.