• Title/Summary/Keyword: discrete cosine transform(DCT)

Search Result 346, Processing Time 0.024 seconds

A Dynamically Segmented DCT Technique for Grid Artifact Suppression in X-ray Images (X-ray 영상에서 그리드 아티팩트 개선을 위한 동적 분할 기반 DCT 기법)

  • Kim, Hyunggue;Jung, Joongeun;Lee, Jihyun;Park, Joonhyuk;Seo, Jisu;Kim, Hojoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.4
    • /
    • pp.171-178
    • /
    • 2019
  • The use of anti-scatter grids in radiographic imaging has the advantage of preventing the image distortion caused by scattered radiation. However, it carries the side effect of leaving artifacts in the X-ray image. In this paper, we propose a grid line suppression technique using discrete cosine transform(DCT). In X-ray images, the grid lines have different characteristics depending on the shape of the object and the area of the image. To solve this problem, we adopt the DCT transform based on a dynamic segmentation, and propose a filter transfer function for each individual segment. An algorithm for detecting the band of grid lines in frequency domain and a band stop filter(BSF) with a filter transfer function of a combination of Kaiser window and Butterworth filter have been proposed. To solve the blocking effects, we present a method to determine the pixel values using multiple structured images. The validity of the proposed theory has been evaluated from the experimental results using 140 X-ray images.

Performance Comparison of Wavelet Transform Based Watermarking and DCT Transform Based Watermarking (Wavelet 변환과 DCT 변환을 이용한 워터마킹에 관한 연구)

  • 장용원;한승수;김인택
    • Proceedings of the IEEK Conference
    • /
    • 2000.11c
    • /
    • pp.85-88
    • /
    • 2000
  • With the rapid growth of network distributions of digitized media(audio, image, and video), there is an urgent need for copyright protection. For now watermarking is a well-known technique for copyright protection of digital data. To embed a digital watermark to the image, discrete cosine transform(DCT) and wavelet transform are commonly used. In this paper, the performance of the DCT based watermarking technique and wavelet based watermarking technique were compared and the influences of the parameter a that decides the strength of the watermarking data were considered.

  • PDF

Transform Domain Resizing for DCT-Based Codec (DCT 코덱에 기반한 변환 영역에서의 리사이징 알고리즘)

  • 신건식;장준영;강문기
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.25-34
    • /
    • 2004
  • The ability to perform the same operations in the transform domain as in the spatial domain is important for efficient image transmission through a channel. We perform image resizing, which includes magnifying and reducing the size, in the discrete cosine transform(DCT) domain and the effects of the transform domain approach are analyzed in the corresponding spatial domain. Based on this analysis, the two resizing algorithms are proposed. The first one further compresses the images encoded by the compression standard by reducing the size before compression, and the other reduces the loss of information while maintaining the conventional compression rate. Because of its compatibility with standard codec, these algorithms can be easily embedded in JPEG and MPEG codecs, which are widely used for the purpose of image storage and transmission. Experimental results show a reduction of about half the bit size with similar image quality and about a 2- or 3-dB quality improvements in the similar compression rate.

Optimized Integer Cosine Transform (최적화 정수형 여현 변환)

  • 이종하;김혜숙;송인준;곽훈성
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.9
    • /
    • pp.1207-1214
    • /
    • 1995
  • We present an optimized integer cosine transform(OICT) as an alternative approach to the conventional discrete cosine transform(DCT), and its fast computational algorithm. In the actual implementation of the OICT, we have used the techniques similar to those of the orthogonal integer transform(OIT). The normalization factors are approximated to single one while keeping the reconstruction error at the best tolerable level. By obtaining a single normalization factor, both forward and inverse transform are performed using only the integers. However, there are so many sets of integers that are selected in the above manner, the best OICT matrix obtained through value minimizing the Hibert-Schmidt norm and achieving fast computational algorithm. Using matrix decomposing, a fast algorithm for efficient computation of the order-8 OICT is developed, which is minimized to 20 integer multiplications. This enables us to implement a high performance 2-D DCT processor by replacing the floating point operations by the integer number operations. We have also run the simulation to test the performance of the order-8 OICT with the transform efficiency, maximum reducible bits, and mean square error for the Wiener filter. When the results are compared to those of the DCT and OIT, the OICT has out-performed them all. Furthermore, when the conventional DCT coefficients are reduced to 7-bit as those of the OICT, the resulting reconstructed images were critically impaired losing the orthogonal property of the original DCT. However, the 7-bit OICT maintains a zero mean square reconstruction error.

  • PDF

Approximate Clustering on Data Streams Using Discrete Cosine Transform

  • Yu, Feng;Oyana, Damalie;Hou, Wen-Chi;Wainer, Michael
    • Journal of Information Processing Systems
    • /
    • v.6 no.1
    • /
    • pp.67-78
    • /
    • 2010
  • In this study, a clustering algorithm that uses DCT transformed data is presented. The algorithm is a grid density-based clustering algorithm that can identify clusters of arbitrary shape. Streaming data are transformed and reconstructed as needed for clustering. Experimental results show that DCT is able to approximate a data distribution efficiently using only a small number of coefficients and preserve the clusters well. The grid based clustering algorithm works well with DCT transformed data, demonstrating the viability of DCT for data stream clustering applications.

An Efficient Algorithm for Improving Calculation Complexity of the MDCT/IMDCT (MDCT/IMDCT의 계산 복잡도를 개선하기 위한 효율적인 알고리즘)

  • 조양기;이원표;김희석
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.6
    • /
    • pp.106-113
    • /
    • 2003
  • The modified discrete cosine transform (MDCT) and inverse MDCT (IMDCT) are employed in subband/transform coding schemes as the analysis/synthesis filter bank based on time domain aliasing cancellation (TDAC). And the MDCT and IMDCT are the most computational intensive operations in layer III of the MPEG audio coding standard. In this paper, we propose a new efficient algorithm for the MDCT/IMDCT computation in various audio coding systems. It is based on the MDCT/IMDCT computation algorithm using the discrete cosine transforms (DCTs), and It employs two discrete cosine transform of type II (DCT-II) to compute the MDCT/IMDCT In addition, it takes advantage of ability in calculating the MDCT/IMDCT computation, where the length of a data block Is divisible by 4. The Proposed algorithm in this paper requires less calculation complexity than the existing method does. Also, it can be implemented by the parallel structure, therefore its structure is particularly suitable for VLSI realization

Feature Representation Method to Improve Image Classification Performance in FPGA Embedded Boards Based on Neuromorphic Architecture (뉴로모픽 구조 기반 FPGA 임베디드 보드에서 이미지 분류 성능 향상을 위한 특징 표현 방법 연구)

  • Jeong, Jae-Hyeok;Jung, Jinman;Yun, Young-Sun
    • Journal of Software Assessment and Valuation
    • /
    • v.17 no.2
    • /
    • pp.161-172
    • /
    • 2021
  • Neuromorphic architecture is drawing attention as a next-generation computing that supports artificial intelligence technology with low energy. However, FPGA embedded boards based on Neuromorphic architecturehave limited resources due to size and power. In this paper, we compared and evaluated the image reduction method using the interpolation method that rescales the size without considering the feature points and the DCT (Discrete Cosine Transform) method that preserves the feature points as much as possible based on energy. The scaled images were compared and analyzed for accuracy through CNN (Convolutional Neural Networks) in a PC environment and in the Nengo framework of an FPGA embedded board.. As a result of the experiment, DCT based classification showed about 1.9% higher performance than that of interpolation representation in both CNN and FPGA nengo environments. Based on the experimental results, when the DCT method is used in a limited resource environment such as an embedded board, a lot of resources are allocated to the expression of neurons used for classification, and the recognition rate is expected to increase.

DCT and DWT Based Robust Audio Watermarking Scheme for Copyright Protection

  • Deb, Kaushik;Rahman, Md. Ashikur;Sultana, Kazi Zakia;Sarker, Md. Iqbal Hasan;Chong, Ui-Pil
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Digital watermarking techniques are attracting attention as a proper solution to protect copyright for multimedia data. This paper proposes a new audio watermarking method based on Discrete Cosine Transformation (DCT) and Discrete Wavelet Transformation (DWT) for copyright protection. In our proposed watermarking method, the original audio is transformed into DCT domain and divided into two parts. Synchronization code is applied on the signal in first part and 2 levels DWT domain is applied on the signal in second part. The absolute value of DWT coefficient is divided into arbitrary number of segments and calculates the energy of each segment and middle peak. Watermarks are then embedded into each middle peak. Watermarks are extracted by performing the inverse operation of watermark embedding process. Experimental results show that the hidden watermark data is robust to re-sampling, low-pass filtering, re-quantization, MP3 compression, cropping, echo addition, delay, and pitch shifting, amplitude change. Performance analysis of the proposed scheme shows low error probability rates.

A study of Image Compression Algorithm using DCT (DCT를 이용한 영상압축 알고리즘에 관한 연구)

  • 한동호;이준노
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.323-330
    • /
    • 1992
  • A Study of Image Compression Algorithm using DCT This paper describes the system that implement a JPEG(Joint Photographic Experts Group) algorithm based on DCT(Discrete Cosine Transform) uslng CCD kameva, Image Grabber, and IBM PC. After cosine transforms the acquisited image, this algorithm quantize and entropy encode the coefficients by JPEG code table. The coefficients are reconstructed by the Huffman decoding, dequantized procedure, and Inverse cosine transform. The results obtained from the impleulented system are as follows. (1) For effcient storage and easy implementation, this system save Image as a PCX formal (2) Thls system get 7:1 compression ratio(3.8 RMSE value) without large distortion. (3) With a low pass filtering, thls system eliminate high frequency components and get 20% enhanced compression ratio. (4) Thls system enhance the reconstructed Image using histogram modeling.

  • PDF

Facial Feature Extraction Based on Private Energy Map in DCT Domain

  • Kim, Ki-Hyun;Chung, Yun-Su;Yoo, Jang-Hee;Ro, Yong-Man
    • ETRI Journal
    • /
    • v.29 no.2
    • /
    • pp.243-245
    • /
    • 2007
  • This letter presents a new feature extraction method based on the private energy map (PEM) technique to utilize the energy characteristics of a facial image. Compared with a non-facial image, a facial image shows large energy congestion in special regions of discrete cosine transform (DCT) coefficients. The PEM is generated by energy probability of the DCT coefficients of facial images. In experiments, higher face recognition performance figures of 100% for the ORL database and 98.8% for the ETRI database have been achieved.

  • PDF