• 제목/요약/키워드: discrete convolution

검색결과 52건 처리시간 0.026초

VISUALIZATION OF DISCRETE CONVOLUTION STRUCTURE USING TECHNOLOGY

  • Song, Keehong
    • Korean Journal of Mathematics
    • /
    • 제14권1호
    • /
    • pp.35-46
    • /
    • 2006
  • The concept of convolution is a fundamental mathematical concept in a wide variety of disciplines and applications including probability, image processing, physics, and many more. The visualization of convolution for the continuous case is generally predetermined. On the other hand, the convolution structure embedded in the discrete case is often subtle and its visualization is non- trivial. This paper purports to develop the CAS techniques in visualizing the logical structure in the concept of a discrete convolution.

  • PDF

Discrete singular convolution for buckling analyses of plates and columns

  • Civalek, Omer;Yavas, Altug
    • Structural Engineering and Mechanics
    • /
    • 제29권3호
    • /
    • pp.279-288
    • /
    • 2008
  • In the present study, the discrete singular convolution (DSC) method is developed for buckling analysis of columns and thin plates having different geometries. Regularized Shannon's delta (RSD) kernel is selected as singular convolution to illustrate the present algorithm. In the proposed approach, the derivatives in both the governing equations and the boundary conditions are discretized by the method of DSC. The results obtained by DSC method were compared with those obtained by the other numerical and analytical methods.

이산 Convolution 적산의 z변환의 증명을 위한 인과성의 필요에 대한 재고 (A Reconsideration of the Causality Requirement in Proving the z-Transform of a Discrete Convolution Sum)

  • 정태상;이재석
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권1호
    • /
    • pp.51-54
    • /
    • 2003
  • The z-transform method is a basic mathematical tool in analyzing and designing digital signal processing systems for discrete input and output signals. There are may cases where the output signal is in the form of a discrete convolution sum of an input function and a designed digital processing algorithm function. It is well known that the z-transform of the convolution sum becomes the product of the two z-transforms of the input function and the digital processing function, whose proofs require the causality of the digital signal processing function in the almost all the available references. However, not all of the convolution sum functions are based on the causality. Many digital signal processing systems such as image processing system may depend not on the time information but on the spatial information, which has nothing to do with causality requirement. Thus, the application of the causality-based z-transform theorem on the convolution sum cannot be used without difficulty in this case. This paper proves the z-transform theorem on the discrete convolution sum without causality requirement, and make it possible for the theorem to be used in analysis and desing for any cases.

Frequency analysis of moderately thick uniform isotropic annular plates by discrete singular convolution method

  • Civalek, Omer;Ersoy, Hakan
    • Structural Engineering and Mechanics
    • /
    • 제29권4호
    • /
    • pp.411-422
    • /
    • 2008
  • In the present study, free vibration analysis of thick annular plates is analyzed by discrete singular convolution method. The Mindlin plate theory is employed. The material is isotropic, homogeneous and obeys Hook's law. In this paper, discrete singular convolution method is used for discretization of equations of motion. Axisymmetric frequency values are presented illustrating the effect of radius ratio and thickness to radius ratio of the annular plate. The influence of boundary conditions on the frequency characteristics is also discussed. Comparing results with those in the literature validates the present analysis. It is shown that the obtained results are very accurate by this approach.

Free vibration analysis of composite conical shells using the discrete singular convolution algorithm

  • Civalek, Omer
    • Steel and Composite Structures
    • /
    • 제6권4호
    • /
    • pp.353-366
    • /
    • 2006
  • The discrete singular convolution (DSC) algorithm for determining the frequencies of the free vibration of single isotropic and orthotropic laminated conical shells is developed by using a numerical solution of the governing differential equations of motion based on Love's first approximation thin shell theory. By applying the discrete singular convolution method, the free vibration equations of motion of the composite laminated conical shell are transformed to a set of algebraic equations. Convergence and comparison studies are carried out to check the validity and accuracy of the DSC method. The obtained results are in excellent agreement with those in the literature.

CERTAIN RADIALLY DILATED CONVOLUTION AND ITS APPLICATION

  • Rhee, Jung-Soo
    • 호남수학학술지
    • /
    • 제32권1호
    • /
    • pp.101-112
    • /
    • 2010
  • Using some interesting convolution, we find kernels recovering the given function f. By a slight change of this convolution, we obtain an identity filter related to the Fourier series in the discrete time domain. We also introduce some techniques to decompose an impulse into several dilated pieces in the discrete domain. The detail examples deal with specific constructions of those decompositions. Also we obtain localized moving averages from a decomposition of an impulse to make hybrid Bollinger bands, that might give various strategies for stock traders.

Discrete singular convolution method for bending analysis of Reissner/Mindlin plates using geometric transformation

  • Civalek, Omer;Emsen, Engin
    • Steel and Composite Structures
    • /
    • 제9권1호
    • /
    • pp.59-75
    • /
    • 2009
  • In this study, a simple approach for bending analysis of Reissner-Mindlin plates is presented using the four-node quadrilateral domain transformation based on discrete singular convolution. In the proposed approach, irregular physical domain is transformed into a rectangular domain by using the geometric coordinate transformation. The DSC procedures are then applied to discrete the governing equations and boundary conditions. The accuracy of the proposed method is verified by comparison with known solutions obtained by other numerical or analytical methods. Results for Reissner-Mindlin plates show a satisfactory agreement with the analytical and numerical solutions.

Free vibration of circular and annular membranes with varying density by the method of discrete singular convolution

  • Ersoy, Hakan;Ozpolat, Lutfiye;Civalek, Omer
    • Structural Engineering and Mechanics
    • /
    • 제32권5호
    • /
    • pp.621-634
    • /
    • 2009
  • A numerical method is developed to investigate the effects of some geometric parameters and density variation on frequency characteristics of the circular and annular membranes with varying density. The discrete singular convolution method based on regularized Shannon's delta kernel is applied to obtain the frequency parameter. The obtained results have been compared with the analytical and numerical results of other researchers, which showed well agreement.

Vibration analysis of plates with curvilinear quadrilateral domains by discrete singular convolution method

  • Civalek, Omer;Ozturk, Baki
    • Structural Engineering and Mechanics
    • /
    • 제36권3호
    • /
    • pp.279-299
    • /
    • 2010
  • A methodology on application of the discrete singular convolution (DSC) technique to the free vibration analysis of thin plates with curvilinear quadrilateral platforms is developed. In the proposed approach, irregular physical domain is transformed into a rectangular domain by using geometric coordinate transformation. The DSC procedures are then applied to discretization of the transformed set of governing equations and boundary conditions. For demonstration of the accuracy and convergence of the method, some numerical examples are provided on plates with different geometry such as elliptic, trapezoidal having straight and parabolic sides, sectorial, annular sectorial, and plates with four curved edges. The results obtained by the DSC method are compared with those obtained by other numerical and analytical methods. The method is suitable for the problem considered due to its generality, simplicity, and potential for further development.

Stability and non-stationary vibration analysis of beams subjected to periodic axial forces using discrete singular convolution

  • Song, Zhiwei;Li, Wei;Liu, Guirong
    • Structural Engineering and Mechanics
    • /
    • 제44권4호
    • /
    • pp.487-499
    • /
    • 2012
  • Dynamic instability of beams subjected to periodic axial forces is studied using the discrete singular convolution (DSC) method with the regularized Shannon's delta kernel. The principal regions of dynamic instability under different boundary conditions are examined in detail, and the non-stationary vibrations near the stability-instability critical regions have been investigated. It is found that the results obtained by using the DSC method are consistent with the analytical solutions, which shows that the DSC algorithm is suitable for the problems considered in this study. It was found that there is a narrow region of beat vibration existed in the vicinity of one side (${\theta}/{\Omega}$ > 1) of the boundaries of the instable region for each condition.