• Title/Summary/Keyword: discrete combinatorial optimization

Search Result 12, Processing Time 0.025 seconds

Genetic-Based Combinatorial Optimization Method for Design of Rolling Element Bearing (구름 베어링 설계를 위한 유전 알고리듬 기반 조합형 최적설계 방법)

  • 윤기찬;최동훈;박창남
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.166-171
    • /
    • 2001
  • In order to improve the efficiency of the design process and the quality of the resulting design for the application-based exclusive rolling element bearings, this study propose design methodologies by using a genetic-based combinatorial optimization. By the presence of discrete variables such as the number of rolling element (standard component) and by the engineering point of views, the design problem of the rolling element bearing can be characterized by the combinatorial optimization problem as a fully discrete optimization. A genetic algorithm is used to efficiently find a set of the optimum discrete design values from the pre-defined variable sets. To effectively deal with the design constraints and the multi-objective problem, a ranking penalty method is suggested for constructing a fitness function in the genetic-based combinatorial optimization. To evaluate the proposed design method, a robust performance analyzer of ball bearing based on quasi-static analysis is developed and the computer program is applied to some design problems, 1) maximize fatigue life, 2) maximize stiffness, 3) maximize fatigue life and stiffness, of a angular contact ball bearing. Optimum design results are demonstrate the effectiveness of the design method suggested in this study. It believed that the proposed methodologies can be effectively applied to other multi-objective discrete optimization problems.

  • PDF

DEVELOPMENT OF A TABU SEARCH HEURISTIC FOR SOLVING MULTI-OBJECTIVE COMBINATORIAL PROBLEMS WITH APPLICATIONS TO CONSTRUCTING DISCRETE OPTIMAL DESIGNS

  • JOO SUNG JUNG;BONG JIN YUM
    • Management Science and Financial Engineering
    • /
    • v.3 no.1
    • /
    • pp.75-88
    • /
    • 1997
  • Tabu search (TS) has been successfully applied for solving many complex combinatorial optimization problems in the areas of operations research and production control. However, TS is for single-objective problems in its present form. In this article, a TS-based heuristic is developed to determine Pareto-efficient solutions to a multi-objective combinatorial optimization problem. The developed algorithm is then applied to the discrete optimal design problem in statistics to demonstrate its usefulness.

  • PDF

Performance Comparison of Discrete Particle Swarm Optimizations in Sequencing Problems (순서화 문제에서 01산적 Particle Swarm Optimization들의 성능 비교)

  • Yim, D.S.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.4
    • /
    • pp.58-68
    • /
    • 2010
  • Particle Swarm Optimization (PSO) which has been well known to solve continuous problems can be applied to discrete combinatorial problems. Several DPSO (Discrete Particle Swarm Optimization) algorithms have been proposed to solve discrete problems such as traveling salesman, vehicle routing, and flow shop scheduling problems. They are different in representation of position and velocity vectors, operation mechanisms for updating vectors. In this paper, the performance of 5 DPSOs is analyzed by applying to traditional Traveling Salesman Problems. The experiment shows that DPSOs are comparable or superior to a genetic algorithm (GA). Also, hybrid PSO combined with local optimization (i.e., 2-OPT) provides much improved solutions. Since DPSO requires more computation time compared with GA, however, the performance of hybrid DPSO is not better than hybrid GA.

Optimal sensor placement for structural health monitoring based on deep reinforcement learning

  • Xianghao Meng;Haoyu Zhang;Kailiang Jia;Hui Li;Yong Huang
    • Smart Structures and Systems
    • /
    • v.31 no.3
    • /
    • pp.247-257
    • /
    • 2023
  • In structural health monitoring of large-scale structures, optimal sensor placement plays an important role because of the high cost of sensors and their supporting instruments, as well as the burden of data transmission and storage. In this study, a vibration sensor placement algorithm based on deep reinforcement learning (DRL) is proposed, which can effectively solve non-convex, high-dimensional, and discrete combinatorial sensor placement optimization problems. An objective function is constructed to estimate the quality of a specific vibration sensor placement scheme according to the modal assurance criterion (MAC). Using this objective function, a DRL-based algorithm is presented to determine the optimal vibration sensor placement scheme. Subsequently, we transform the sensor optimal placement process into a Markov decision process and employ a DRL-based optimization algorithm to maximize the objective function for optimal sensor placement. To illustrate the applicability of the proposed method, two examples are presented: a 10-story braced frame and a sea-crossing bridge model. A comparison study is also performed with a genetic algorithm and particle swarm algorithm. The proposed DRL-based algorithm can effectively solve the discrete combinatorial optimization problem for vibration sensor placements and can produce superior performance compared with the other two existing methods.

Optimal Design of Truss Structures by Resealed Simulated Annealing

  • Park, Jungsun;Miran Ryu
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1512-1518
    • /
    • 2004
  • Rescaled Simulated Annealing (RSA) has been adapted to solve combinatorial optimization problems in which the available computational resources are limited. Simulated Annealing (SA) is one of the most popular combinatorial optimization algorithms because of its convenience of use and because of the good asymptotic results of convergence to optimal solutions. However, SA is too slow to converge in many problems. RSA was introduced by extending the Metropolis procedure in SA. The extension rescales the state's energy candidate for a transition before applying the Metropolis criterion. The rescaling process accelerates convergence to the optimal solutions by reducing transitions from high energy local minima. In this paper, structural optimization examples using RSA are provided. Truss structures of which design variables are discrete or continuous are optimized with stress and displacement constraints. The optimization results by RSA are compared with the results from classical SA. The comparison shows that the numbers of optimization iterations can be effectively reduced using RSA.

An Effective Priority Method Using Generator's Discrete Sensitivity Value for Large-scale Preventive Maintenance Scheduling (발전기 이산 민감도를 이용한 효율적인 우선순위법의 대규모 예방정비계획 문제에의 적용 연구)

  • Park, Jong-Bae;Jeong, Man-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.234-240
    • /
    • 1999
  • This paper presents a new approach for large-scale generator maintenance scheduling optimizations. The generator preventive maintenance scheduling problems are typical discrete dynamic n-dimensional vector optimization ones with several inequality constraints. The considered objective function to be minimized a subset of{{{{ { R}^{n } }}}} space is the variance (i.g., second-order momentum) of operating reserve margin to levelize risk or reliability during a year. By its nature of the objective function, the optimal solution can only be obtained by enumerating all combinatorial states of each variable, a task which leads to computational explosion in real-world maintenance scheduling problems. This paper proposes a new priority search mechanism based on each generator's discrete sensitivity value which was analytically developed in this study. Unlike the conventional capacity-based priority search, it can prevent the local optimal trap to some extents since it changes dynamically the search tree in each iteration. The proposed method have been applied to two test systems (i.g., one is a sample system with 10 generators and the other is a real-world lage scale power system with 280 generators), and the results anre compared with those of the conventional capacith-based search method and combinatorial optimization method to show the efficiency and effectiveness of the algorithm.

  • PDF

An Efficient Method for Nonlinear Optimization Problems using Genetic Algorithms (유전해법을 이용한 비선형최적화 문제의 효율적인 해법)

  • 임승환;이동춘
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.44
    • /
    • pp.93-101
    • /
    • 1997
  • This paper describes the application of Genetic Algorithms(GAs) to nonlinear constrained mixed optimization problems. Genetic Algorithms are combinatorial in nature, and therefore are computationally suitable for treating discrete and integer design variables. But, several problems that conventional GAs are ill defined are application of penalty function that can be adapted to transform a constrained optimization problem into an unconstrained one and premature convergence of solution. Thus, we developed an improved GAs to solve this problems, and two examples are given to demonstrate the effectiveness of the methodology developed in this paper.

  • PDF

An efficient method for nonlinear optimization problems using modified genetic algorithms (수정된 유전 알고리즘을 이용한 비선형최적화 문제의 효율적인 해법)

  • 윤영수;이상용
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.519-524
    • /
    • 1996
  • This paper describes the application of Genetic Algorithms(GAs) to nonlinear constrained mixed optimization problems. Genetic Algorithms are combinatorial in nature, and therefore are computationally suitable for treating discrete and integer design variables. But, several problems that conventional GAs are ill defined are applicaiton of penalty function that can be adapted to transform a constrained optimization problem into an unconstrained optimization problem into an unconstrained one and premature convergence of solution. Thus, we developed an modified GAs to solve this problems, and two examples are given to demonstrate the effectiveness of the methodology developed in this paper.

  • PDF

Continuous Variable을 갖는 Mean Field Annealing과 그 응용

  • Lee, Gyeong-Hui;Jo, Gwang-Su;Lee, Won-Don
    • ETRI Journal
    • /
    • v.14 no.3
    • /
    • pp.67-74
    • /
    • 1992
  • Discrete variable을 갖는 Mean Field Theory(MFT) neural network은 이미 많은 combinatorial optimization 문제에 적용되어져 왔다. 본 논문에서는 이를 확장하여 continuous variable을 갖는 mean field annealing을 제안하고, 이러한 network에서 integral로 표현되는 spin average를 mean field에 기초하여 어렵지 않게 구할 수 있는 one-variable stochastic simulated annealing을 제안하였다. 이런 방법으로 multi-body problem을 single-body problem으로 바꿀 수 있었다. 또한 이 방법을 이용한 응용으로서 통계학에서 잘 알려진 문제중의 하나인 quantification analysis 문제에 적용하여 타당성을 보였다.

  • PDF

Application of Nonlinear Integer Programming for Vibration Optimization of Ship Structure (선박 구조물의 진동 최적화를 위한 비선형 정수 계획법의 적용)

  • Kong, Young-Mo;Choi, Su-Hyun;Song, Jin-Dae;Yang, Bo-Suk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.654-665
    • /
    • 2005
  • In this paper, we present a non-linear integer programming by genetic algorithm (GA) for available sizes of stiffener or thickness of plate in a job site. GA can rapidly search for the approximate global optimum under complicated design environment such as ship. Meanwhile it can handle the optimization problem involving discrete design variable. However, there are many parameters have to be set for GA, which greatly affect the accuracy and calculation time of optimum solution. The setting process is hard for users, and there are no rules to decide these parameters. In order to overcome these demerits, the optimization for these parameters has been also conducted using GA itself. Also it is proved that the parameters are optimal values by the trial function. Finally, we applied this method to compass deck of ship where the vibration problem is frequently occurred to verify the validity and usefulness of nonlinear integer programming.