• Title/Summary/Keyword: discontinuous topography

Search Result 12, Processing Time 0.028 seconds

NUMERICAL SIMULATION OF COASTAL INUNDATION OVER DISCONTINUOUS TOPOGRAPHY

  • Yoon, Sung-Bum;Cho, Ji-Hoon
    • Water Engineering Research
    • /
    • v.2 no.2
    • /
    • pp.75-87
    • /
    • 2001
  • A new moving boundary technique for leap-frog finite difference numerical mode is proposed for the resonable simulation of coastal inundation over discontinuous topography. The new scheme improves the moving boundary technique developed by Imamura(1996). The present scheme is tested using the analytical solution of Thacker(1981) for the case of free oscillation with moving boundary in a parabolic bowl. Finally, a numerical simulation is conducted for the flooding over a tidal barrier constructed on a simple concave geometry. A general feature of inundation over a discontinuous topography is well described by the numerical model.

  • PDF

A Novel Scheme to Depth-averaged Model for Analyzing Shallow-water Flows over Discontinuous Topography (불연속 지형을 지나는 천수 흐름의 해석을 위한 수심적분 모형에 대한 새로운 기법)

  • Hwang, Seung-Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.1237-1246
    • /
    • 2015
  • A novel technique was proposed to calculate fluxes accurately by separation of flow area into a part of step face which is dominated by flow resistance of it and an upper part which is relatively less affected by the step face in analyzing shallow-water flows over discontinuous topography. This technique gives fairly good agreement with exact solutions, 3D simulations, and experimental results. It has been possible to directly analyze shallow-water flows over discontinuous topography by the technique developed in this study. It is expected to apply the developed technique to accurate evaluation of overflows over weirs or retaining walls (riverside roads) and areas flooded by the inundation in the city covered in discontinuous topography.

Numerical analysis of shallow-water flow over the square-edged broad-crested weir (직각 광정 위어를 지나는 천수 흐름의 수치 해석)

  • Hwang, Seung-Yong
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.811-821
    • /
    • 2022
  • Accuracy of a numerical model with the Hwang's scheme of directly analyzing discontinuous topography could be enhanced by introducing a flux correction coefficient that accounted for the deviation of actual pressure from hydrostatic distribution acting on the front of discontinuous topography. The optimal coefficient was determined from 218 experimental runs for square-edged broad-crested weir and simulation with it showed good agreement with another two square-edged broad-crested weir experiments and an unsteady side-weir experiment. This enabled accurate numerical simulation of shallow-water flow over the discontinuous river structure, such as square-edged broad-crested weir, without alleviating discontinuous topography with refined meshes or imposing internal boundary conditions.

Flow Resistance by Discontinuous Topography in Simulating Shallow-water Flow (천수 흐름 모의에서 불연속 지형에 따른 흐름 저항)

  • Hwang, Seung-Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.175-181
    • /
    • 2019
  • The hydrostatic pressure, thrust, and wall reflection by a step were studied as the flow resistance due to the discontinuous topography by using the Hwang's scheme in calculating fluxes with an approximate Riemann solver. Compared with the broad-crested weir experiments, the result simulated by using the thrust was the best among them. Hwang's scheme with the thrust by a step was applied to the side weir experiment. The results of simulation agreed well with those of the experiment. Compared to the existing depth-integrated model, the accuracy was slightly lowered, but the running time was reduced to about 20 %.

A Study on Imposing Exact Solutions as Internal Boundary Conditions in Simulating Shallow-water Flows over a Step (계단을 지나는 천수 흐름의 모의에서 내부 경계조건으로서 정확해의 부여에 관한 연구)

  • Hwang, Seung-Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.479-492
    • /
    • 2014
  • In this study, was proposed a numerical scheme imposing exact solutions as the internal boundary conditions for the shallow-water flows over a discontinuous transverse structure such as a step. The HLLL approximate Riemann solver with the MUSCL was used for the test of the proposed scheme. Very good agreement was obtained between simulations and exact solutions for various problems of the shallow-water flows over a step. In addition, results by the numerical model showed good agreement with those of dam-break experiments over a step and stepped chute one. Developed model can simulate the shallow-water flows over discontinuous bottom such as a drop structure without additional rating curve or topography smoothing. Given the proper evaluations for the flow resistance by a step and the energy loss by the nappe flow in the future, could be simulated flooding and drying of the shallow-water flows over discontinuous topography such as a weir or the river road with retaining wall.

Numerical Simulation and Laboratory Experiment of Flooding on a Perpendicular Floodplain with Dam-Break Flows (댐 붕괴 흐름에 의한 직립 홍수터의 범람 실험 및 모의)

  • Hwang, Seung-Yong;Kim, Hyung Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.3
    • /
    • pp.219-227
    • /
    • 2021
  • Numerical simulation with Hwang's scheme, which can analyze shallow-water flow over discontinuous topography, was compared with a laboratory experiment of flooding on a perpendicular floodplain with dam-break flows. The simulation results were in good agreement with the results measured in an experimental flume with a reservoir, channel, and floodplain. The wetting and drying process on a perpendicular floodplain with a dam-break flow was particularly well simulated. The difference in simulation results according to the type of flow resistance was insignificant. The results of this study are expected to improve the accuracy of predicting inundation in urban rivers.

SUBSIDENCE AT DUK-PO AREA REVEALED BY DINSAR AND INTERFEROGRAM STACKING

  • Hong, Sang-Hoon;Kim, Sang-Wan;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.308-311
    • /
    • 2002
  • Radar interferometric phase is sensitive to both ground topography and coherent surface displacement. The basic tactics of differential interferometric synthetic aperture radar (DInSAR) technique are to separate the two effects. Applications of DInSAR to Duk-Po area in Busan were studied. In the study area, an abrupt subsidence, possibly caused by sub-way construction, was observed by JERS-1 SAR interferometry. Differential interferograms were generated using twenty-three JERS-1 SAR data acquired between April 24, 1992, and August 7, 1998. Because the area is relatively flat with little topographic relief the topographic effects were not removed. A phase filtering and interferogram techniques were applied to increase fringe clarity as well as to decrease decorrelation error. The stacking improves the quality of interferograms especially when the displacement is discontinuous. The interferograms clearly show the evidence of subsidence along Duk-Po subway railroad. These results demonstrate that the interferogram stacking technique can improve the detectability of radar interferometry to an abrupt displacement and DInSAR is useful to geological engineering applications.

  • PDF

A Case Study on the Blasting Analysis of Slope Using Monitored Vibration Waveform (실측진동파형을 이용한 비탈면 발파진동 해석 사례)

  • Park, Do-Hyun;Cho, Young-Gon;Jeon, Seok-Won
    • Explosives and Blasting
    • /
    • v.24 no.2
    • /
    • pp.41-50
    • /
    • 2006
  • Excavation by explosives blasting necessarily involves noise and vibration, which is highly prone to face claims on the environmental and structural aspects from the neighbors. When the blasting carried out in the vicinity of a structure, the effect of blasting vibration on the stability of the structure should be carefully evaluated. In the conventional method of evaluation, an equation for blast vibration is obtained from test blasting which is later used to determine the amount of charge. This method, however, has limitations in use since it does not consider topography and change in ground conditions. In order to overcome the limitations, dynamic numerical analysis is recently used in continuum or discontinuous models, where the topography and the ground conditions can be exactly implemented. In the numerical analysis for tunnels and rock slopes, it is very uncommon to simulate multi-hole blasting. A single-hole blasting pressure is estimated and the equivalent overall pressure at the excavation face is used. This approach based on an ideal case usually does not consider the ground conditions. And this consequently results in errors in calculation. In this presentation of a case study, a new approach of using blast waves obtained in the test blast is proposed. The approach was carried out in order to improve the accuracy in calculating blasting pressure. The stability of a structure in the vicinity of a slope blasting was examined using the newly proposed method.

Numerical Formulation for Flow Analysis of Dredged Soil (준설토 유동해석을 위한 유한요소 수식화)

  • Shin, Hosung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.3
    • /
    • pp.41-48
    • /
    • 2014
  • Experimental study of sedimentation and self-weight consolidation has been primary research area in dredged soil. However, good quality of the dredged soil and minimum water pollution caused by the pumping of reclaimed soil require intensive study of the flow characteristics of dredged material due to dumping. In this study, continuity and the equilibrium equations for mass flow assuming single phase was derived to simulate mass flow in dredged containment area. To optimize computation and modeling time for three dimensional geometry and boundary conditions, depth integration is applied to governing equations to consider three dimensional topography of the site. Petrov-Galerkin formulation is applied in spatial discretization of governing equations. Generalized trapezoidal rule is used for time integration, and Newton iteration process approximated the solution. DG and CDG technique were used for weighting matrix in discontinuous test function in dredged flow analysis, and numerical stability was evaluated by performed a square slump simulation. A comparative analysis for numerical methods showed that DG method applied to SU / PG formulation gives minimal pseudo oscillation and reliable numerical results.

Review on the Three-Dimensional Magnetotelluric Modeling (MT 법의 3차원 모델링 개관)

  • Kim, Hee-Joon;Nam, Myung-Jin;Song, Yoon-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.2
    • /
    • pp.148-154
    • /
    • 2004
  • This article reviews the development of three-dimensional (3-D) magnetotelluric (MT) modeling. The 3-D modeling of electromagnetic fields is essential in understanding the physics of MT soundings, and in implementing an inversion method to reconstruct a 3-D resistivity image. Although various numerical schemes have been developed over the last two decades, practical methods have been quite limited. However, the recent rapid improvement in computer speed and memory, as well as the advance in iterative solution algorithms for a large system of equations, makes it possible to model the MT responses of complex 3-D structures, which have been very difficult to simulate before. The use of staggered grids in finite difference method has become popular, conserving a magnetic flux and an electric current and allowing for realistic discontinuous fields. The convergence of numerical solutions has been greatly accelerated by adopting Krylov subspace methods, proper preconditioning techniques, and static divergence corrections. The vector finite-element method using edge elements is also free from the discontinuity problem, and seems a natural choice for modeling complex structures including irregular topography because its flexibility allows one to capture full geometric complexity.