• Title/Summary/Keyword: discontinuous conduction mode

Search Result 128, Processing Time 0.023 seconds

Input Current Ripple Reduction Algorithm for Interleaved DC-DC Converter (다상 DC-DC 컨버터의 입력 전류 리플 저감 제어 알고리즘)

  • Joo, Dong-Myoung;Kim, Dong-Hee;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.220-226
    • /
    • 2014
  • Input current ripple and harmonic components of the power device are main causes of electromagnetic interference (EMI). Although the discontinuous conduction mode (DCM) operation can reduce harmonic components of the power device by reducing reverse recovery current of diode and turn-off voltage spikes of the switch, input current ripple increases due to high peak to peak inductor current. Therefore, in this paper, frequency control algorithm is proposed to reduce the input current ripple of DCM operated interleaved boost converter. In the proposed algorithm, duty ratio is fixed either 0.33 or 0.67 to minimize the input current ripple and the switching frequency is controlled according to operating conditions. 600 W 3-phase interleaved boost converter prototype system is built to verify proposed algorithm.

Interface between Photovoltaic System and Utility Line using Current-Source PWM Inverter (전류원형 PWM 인버터를 이용한 태양광 시스템과 계통 연계를 위한 연구)

  • Kang, Feel-Soon;Park, Sung-Jun;Park, Han-Woong;Kim, Cheul-U
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.57-61
    • /
    • 2002
  • This paper presents a current-source-inverter based on a buck-boost configuration and its application for residential photovoltaic system. The proposed circuit has five switches. Among them, only one switch acts as chopping, and the other determine the polarity of output; therefore, it can reduce the switching loss. Because the input inductor current is operated on the discontinuous conduction mode, high power factor can be achieved without additional input current controller. So the overall system shows a simple structure. The operational modes are analysed in depth, and then it was verified through the experimental results using a 150 W prototype.

  • PDF

A Switching Method for Loss Reduction in DCM Operation of 3-Phase Interleaved Bidirectional DC-DC Converter (3상 인터리브드 양방향 DC-DC컨버터의 DCM구동시 손실 저감을 위한 스위칭 기법)

  • Seo, Bo-Gil;Jung, Jae-Hun;Nho, Eui-Cheol;Kim, In-Dong;Kim, Heung-Geun;Chun, Tae-Won
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.319-320
    • /
    • 2014
  • 본 논문은 DCM(Discontinuous Conduction Mode)로 동작하는 3상 인터리브드 양방향 DC-DC컨버터를 다룬다. 전류 리플을 줄이기 위해 3상 인터리브드 방식을 이용하였으며 소프트 스위칭 조건을 확보하기 위해 DCM동작을 한다. DCM동작시 스위칭 손실을 분석하고 이를 저감하기 위하여 새로운 스위칭 기법을 제시하며 실험으로 유용성을 입증한다.

  • PDF

Cell Balancing using Discontinuous Conduction Mode Boost-Forward Converter (불연속모드 부스트-포워드 컨버터를 이용한 셀 밸런싱)

  • Kim, Kyoung-Tak;Park, Joung-Hu
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.255-256
    • /
    • 2015
  • 본 논문에서는 새로이 제안되는 불연속모드 양방향 부스트-포워드 컨버터를 사용하는 셀 밸런싱 방법을 제안한다. 이 컨버터는 다중입력과 다중출력의 양방향 배터리 충방전을 다루고, 다중직렬 배터리의 전압 셀 밸런싱에 초점을 두었다. 여러 입력 배터리의 전압 차가 나지 않을 때는 부스트 컨버터가 작동하고, 레퍼런스가 되는 입력 배터리와 다른 입력 배터리의 전압이 불균형이 생길 때 포워드 컨버터가 작동하여 밸런싱을 맞추는 새로운 불연속모드 부스트-포워드 컨버터 토폴로지를 제안한다. 전압 불균형 에 따른 밸런싱 조건에 대한 식을 증명하였고, 실제로 80W급 하드웨어를 제작하여 제안된 회로를 검증하였다.

  • PDF

Phase-Shift Triple Full-Bridge ZVZCS Converter with All Soft Switched Devices

  • Zhu, Junjie;Qian, Qinsong;Lu, Shengli;Sun, Weifeng
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1337-1350
    • /
    • 2019
  • This paper proposes a Phase-Shift Triple Full-Bridge (PSTB) Zero-Voltage Zero-Current-Switching (ZVZCS) converter with a high switching frequency and high efficiency. In the proposed converter, all three bridge legs are shared leading-legs, and all three transformers work in the Discontinuous Conduction Mode (DCM). Thus, all of the switches and diodes in the PSTB ZVZCS can be soft switched. Moreover, since all of the transformers can pass energy from the primary-side to the secondary-side when their primary-side currents are not zero, there is no circulating current. As a result, the PSTB ZVZCS converter can achieve a high efficiency at high operating frequencies. A theoretical analysis and the characteristics of the proposed converter are presented and verified on a 1MHz 200~300V/24V 1.2kW hardware prototype. The proposed converter can reach a peak efficiency of 96.6%.

Boost Type PFC Rectifier with Active Power Decoupling Circuit with Repetitive Controller (반복제어기를 적용한 Active Power Decoupling 회로를 갖는 Boost Type PFC 정류기)

  • Hwang, Duck-Hwan;Lee, Jungyong;Cho, Younghoon;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.6
    • /
    • pp.389-396
    • /
    • 2018
  • This study proposes a control method using a repetitive controller for a boost-type PFC rectifier with an APD circuit structure to improve the current distortion caused by DCM condition. Conventional proportional integral controllers have bandwidth limitations in DCM conditions. The performance improvement of the APD controller in the DCM region is verified through simulations and experiments on the compensation of harmonics by the repetitive controller.

Alleviate Current Distortion of Dual-buck Inverter During Reactive Power Support (듀얼벅 인버터의 무효전력 보상 시 전류 왜곡 저감)

  • Han, Sanghun;Cho, Younghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.2
    • /
    • pp.134-141
    • /
    • 2022
  • This study presents a method for reducing current distortion that occurs when a dual-buck inverter generates reactive power. Dual-buck inverters, which are only capable of unity power factor operation, can generate reactive power capabilities by modifying a modulation technique. However, under non-unity power factor conditions, current distortion occurs at zero-crossing points of grid voltage and output current. This distortion is caused by parasitic capacitors, dead-time, and discontinuous conduction mode operation. This study proposes a modified modulation method to alleviate the current distortion at zero-crossing point of the grid voltage. A repetitive controller is applied to reduce this distortion of the output current. A 1 kVA prototype is built and tested. Simulation and experimental results demonstrate the effectiveness of the proposed method.

A study on the Conducted Noise Reduction in Random PWM (Random PWM 기법을 이용한 전도노이즈 저감)

  • Jeong, Dong-Hyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.10b
    • /
    • pp.154-158
    • /
    • 2006
  • The switching-mode power converter has been widely used because of its features of high efficiency and small weight and size. These features are brought by the ON-OFF operation of semiconductor switching devices. However, this switching operation causes the surge and EMI(Electromagnetic Interference) which deteriorate the reliability of the converter themselves and entire electronic systems. This problem on the surge and noise is one of the most serious difficulties in AC-to-DC converter. Random Pulse Width Modulation (RPWM) is peformed by adding a random perturbation to switching instant while output-voltage regulation of converter is performed. RPWM method for reducing conducted EMI in single switch three phase discontinuous conduction mode boost converter is presented. The more white noise is injected, the more conducted EMI is reduced. But output-voltage is not sufficiently regulated. This is the reason why carrier frequency selection topology is proposed. In the case of carrier frequency selection, output-voltage of steady state and transient state is fully regulated. A RPWM control method was proposed in order to smooth the switching noise spectrum and reduce it's level. Experimental results are verified by converter operating at 300v/1kW with $5%{\sim}30%$ white noise input. Spectrum analysis is performed on the Phase current and the CM noise voltage. The former is measured with Current Probe and the latter is achieved with LISN, which are connected to the spectrum analyzer respectively.

  • PDF

A Study of Buck-Boost Current-Source PWM Inverter for Utility Interactive Photovoltaic Generation System (태양광발전과 계통연계를 위한 Buck-Boost 전류원형 PWM 인버터에 관한 연구)

  • Yang Geun-Ryoung;Kang Feel-Soon;Kim Cheul-U
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.63-68
    • /
    • 2002
  • In a utility interactive photovoltaic generation system, a PWM inverter is used for the connection between the photovoltaic arrays and the utility. The do current becomes pulsated when the conventional inverter system operates in the continuous current mode and dc current pulsation causes the distortion of the ac current waveform. To reduce pulsation of dc input current, This paper presents a Buck-Boost PWM power inverter and its application for residential photovoltaic system. The PWM power inverter is realized by combining two sets of a high frequency Buck-Boost chopper and by making it operate in the discontinuous conduction mode. In this paper, we show the Buck-Boost PWM power inverter circuit, its equivalent circuit and basic differential equations and the power flow characteristics are clarified when the proposed Inverter is interconnected with the utility lines. In conclusion, the proposed inverter system provides a sinusoidal ac current for domestic loads and the utility line with unity power factor

  • PDF

Characteristic Estimation of Single-Stage Active-Clamp Type High Frequency Resonant Inverter (단일 전력단 능동 클램프형 고주파 공진 인버터의 특성 평가)

  • 원재선;강진욱;김동희
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.114-122
    • /
    • 2004
  • This paper presents a novel single-stage active-clamp type high frequency resonant inverter. The proposed topology is integrated full-bridge boost rectifier as power factor corrector and active-clamp type high frequency resonant inverter into a single-stage. The input stage of the full-bridge boost rectifier works in discontinuous conduction mode(DCM) with constant duty cycle and variable switching frequency. So that a boost converter makes the line current follow naturally the sinusoidal line voltage waveform. By adding additional active-clamp circuit to conventional class-E high frequency resonant inverter, main switch of inverter part operates not only at Zero-Voltage-Switching mode but also reduces the switching voltage stress of main switch. Simulation results have demonstrated the feasibility of the proposed high frequency resonant inverter. Characteristics values based on characteristics estimation through circuit analysis is given as basis data in design procedure. Also, experimental results are presented to verify theoretical discussion. This proposed inverter will be able to be practically used as a power supply in the fields of induction heating applications, fluorescent lamp and DC-DC converter etc.