• Title/Summary/Keyword: discharged water

Search Result 763, Processing Time 0.029 seconds

The Characteristics and the Effects of Pollutant Loadings from Nonpoint Sources on Water Quality in Suyeong Bay (수영만 수질에 미치는 비점원 오염부하의 특성과 영향)

  • CHO Eun Il;LEE Suk Mo;PARK Chung-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.3
    • /
    • pp.279-293
    • /
    • 1995
  • The most obvious and easily recognizable sources of potential water pollution are point sources such as domestic and industrial wastes. But recently, the potential effects of nonpoint sources on water quality have been increased apparently. In order to evaluate the characteristics and the effects of nonpoint sources on water quality, this study was performed in Suyeong Bay from May, 1992 to July, 1992. The depth-averaged 2-dimensional numerical model, which consists of the hydrodynamic model and the diffusion model was applied to simulate the water quality in Suyeong Bay. When flowrate was $65.736m^3/s,$ the concentration of pollutants (COD, TSS and VSS) at Oncheon stream (Sebeong bridge) during second flush were very high as much as 121.4mg/l of COD, 1148.0mg/l of TSS and 262.0mg/1 of VSS. When flowrate was 4.686m^3/s, the concentration of pollutants $(TIN,\;NH_4\;^+-\;N,\;NO_2\;^--N\;and\;PO_4\;^{3-}-P)$ during the first flush were very high as much as 20.306mg/1 of TIN, 14.154mg/1 of $NH_4\;^+-N$, 9.571mg/l of $NO_2\;^--N$ and l.785mg/l of $PO_2\;^{3-}-P$ As results of the hydrodynamic model simulation, the computed maximum velocity of tidal currents in Suyeong Bay was 0.3m/s and their direction was clockwise flow for ebb tide and counter clockwise flow for Hood tide. Four different methods were applied for the diffusion simulation in Suyeong Bay. There were the effects for the water quality due to point loads, annual nonpoint loads and nonpoint loads during the wet weather and the investigation period, respectively. The efforts of annual nonpoint loads and nonpoint loads during the wet weather seem to be slightly deteriorated in comparison with the effects of point loads. However, the bay was significantly polluted by the nonpoint loads during the investigation period. In this case, COD and SS concentrations ranged 2.0-30.0mg/l, 7.0- 200.0mg/l in ebb tide, respectively. From these results, it can be emphasized that the large amount of pollutants caused by nonpoint sources during the wet weather were discharged into the bay, and affected significantly to both the water quality and the marine ecosystem. Therefore, it is necessary to consider the loadings of nonpoint pollutants to plan wastewater treatment plant.

  • PDF

Soil Loss and Pollutant Load Estimation in Sacheon River Watershed using a Geographic Information System (GIS를 이용한 동해안 하천유역의 토양유실량과 오염부하량 평가 -사천천을 중심으로-)

  • Cho, Jae-Heon;Yeon, Je-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1331-1343
    • /
    • 2000
  • Through the integration of USLE and GIS, the methodology to estimate the soil loss was developed, and applicated to the Sacheon river in Gangrung. Using GIS, spatial analysis such as watershed boundary determination, flow routing. slope steepness calculation was done. Spatial information from the GIS application was given for each grid. With soil and land use map, information about soil classification and land use was given for each grid too. Based upon these data, thematic maps about the factors of USLE were made. We estimated the soil loss by overlaying the thematic maps. In this manner, we can assess the degree of soil loss for each grid using GIS. Annual average soil loss of Sacheon river watershed is 1.36 ton/ha/yr. Soil loss in forest, dry field, and paddy field is 0.15 ton/ha/yr, 27.04 ton/ha/yr, 0.78 ton/ha/yr respectively. The area of dry field, which is 4% of total area, is $2.4km^2$. But total soil loss of dry field is 6561 ton/yr, and it occupies 84.9 % of total soil loss eroded in Sacheon river watershed. Comparing with the 11.2 ton/ha/yr of an average soil loss tolerance for cropland, provision for the soil loss in dry field is necessary. Run-off and water quality of Sacheon river were measured two times in flood season: from July 24, 1998 to July 28 and from September 29 to October 1. As the run-off of the river increased, SS, TN, TP concentrations and pollutant loadings increased. SS, TN, TP loads of Sacheon river discharged during the 2 heavy rains were 21%, 39%, and 19% of the total pollutant loadings generated in the Sacheon river watershed for one year. We can see that much pollutants are discharged in short period of flood season.

  • PDF

Material Balance and Properties of Compost during Composting of Household Food Wastes Blended with Waste Newspapers (신문지 첨가에 의한 음식쓰레기 퇴비화 과정 중 물질수지 및 퇴비의 성분)

  • Han, Jong-Phil;Park, Ju-Won;Seo, Jeoung-Yoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.1
    • /
    • pp.51-57
    • /
    • 2000
  • Waste newspapers was used as an amendment to adjust the moisture of household food wastes for composting. The mixture of household food wastes and waste newspapers was composted in an especially designed small home composter, where the early fed composting materials were discharged early. The temperature inside composting materials was influenced very much by that of outside, because the composter was not insulated. Accordingly, the higher the outside temperature was, the higher the decomposition rate was. The temperature inside composting materials did not reach to optimum, because the amount of composting materials added in the composter everyday was too little, and it caused too high water content of discharged compost after 15 weeks. Therefore, it was required that the composter must be insulated to maintain the higher temperature. The inorganic compounds$(K_2O,\;CaO,\;MgO,\;P_2O_5)$ and heavy metals(Zn, Cu, Cr, Cd, Hg, As) were accumulated obviously in produced compost, when dry recycled compost was reused as the amendment for adjusting the moisture.

  • PDF

Neutralization of Pyrophyllite Mine Wastes by the Lime Cake By-Product (부산석회를 이용한 납석광산 폐석의 중화처리)

  • Yoo, Kyung-Yoal;Cheong, Young-Wook;Ok, Yong-Sik;Yang, Jae-E.
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.3
    • /
    • pp.215-221
    • /
    • 2005
  • Numerous abandoned or closed mines are present in the steep mountain valleys in Korea due to the depression of the mining industry since the late 1980s. From the mines, enormous amounts of wastes were dumped on the slopes causing sedimentation and acid mine drainage to be discharged directly into streams causing detrimental effects on surrounding environment. Objective of this research was to evaluate the feasibility of the lime cake by-product from the soda ash production (Solvay process) to neutralize the pyrophyllite mine wastes, which have discharged the acid drainage to soil and stream in the watershed. The pH of mine wastes was strongly acidic at pH 3.67 containing over 16% of $Al_2O_3$ and 11% of $Fe_2O_3$. Whereas the lime cake by-product was strongly basic at pH 9.97 due to high contents of CaO, MgO and $CaCl_2$ as major components. Column experiments were conducted to test the neutralizing capacity of the lime cake by-product for the acidic pyrophyllite mine wastes. The column packed with the wastes (control) was treated with the lime cake by-product, calcium carbonate, the dressing soil or combination. The distilled water was eluted statically through the column and the leachate was collected for the chemical analyses. Treatments of the mine wastes with the lime cake by-product (or calcium carbonate) as mixtures increased pH of the leachate from $3.5{\sim}4.0\;to\;7{\sim}8$. Concentrations of Fe and Al in the leachate were also decreased below 1.0 mg $L^{-1}$. A Similar result was observed at the combined treatments of the mine waste, the lime by-product (or calcium carbonate) and the dressing soil. The results indicated that the lime cake by-product could sufficiently neutralize the acid drainage from the pyrophyllite mine wastes without dressing soils.

Response of Sea Eel to the Extracts of Mackerel , Shad and Krill (고등어 , 전어 , 크릴의 추출물질에 대한 붕장어의 반응)

  • Kim, Hyung-Seok;Lee, Byoung-Gee
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.2
    • /
    • pp.125-132
    • /
    • 1990
  • The authors carried out an experiment to investigate the responsive behavior of sea eel, Astroconger myriaster(BREVOORT) to chemical stimuli. The experimental tank was made in doughnut type by using FRP plates. The channel of tank was divided into three concentric troughs by using perforated plastic plates. The inside trough was used as influent part, the outside one as effluent part, and the middle one as the testing trough in which testing fish may be swimmable. The influent part was radially portioned into 12 sections so as to be 30 degrees of central angle. But a basin of any section in testing trough was diverged in the range of 45 degrees of central angle. The the testing trough are radially divided into eight zones. Water is supplied at the rate of 6.3l per minute from the central water tank set as high as 50cm in the center of doughnut, passed across the influent part, testing trough, effluent part and finally discharged by overflow pipes. The chemical substance to stimulate the sea eel was extracted from mackerel, shad and krill which are used as bait for fishing. The chemical substance was injected into any one of 12 hoses which supplies water from central water tank to the influent part at the rate of 2ml per minute. Sea eels used for the experiment were caught by pot in the coast of Chung-mu and accustomed to the tanks for 5 days before applying them to the experiment. The result obtained are as follows: 1. The rate of time length of sea eel's staying in the stimulated zone, as the extracts of mackerel, shad and krill were given to it, was observed as 7.9%, 30.9% and 11.4% respectively. It means that the extract from shad was the most effective of three in attracting sea eel. 2. To compare the effect of freshness of bait fish, the extracts were prepared from shad just killed, form the 24 hour-lapsed one and from the 48 hour-lasped one after killed. The rate of time length of sea eel's staying in the stimulated zone was 30.9%, 17.1% and 11.3% respectively. It means that the freshness is much effective in attracting olfactory fishes like sea eel.

  • PDF

Geochemical and Isotopic Study of the Kumho River (금호강 하천수의 지구화학 및 동위원소 연구)

  • Kim, Yeong-Kyoo;Nam, Eun-Kyung
    • Economic and Environmental Geology
    • /
    • v.42 no.6
    • /
    • pp.527-539
    • /
    • 2009
  • The Kumho River flows through volcanic and sedimentary rocks at upstream and downstream regions and also through industrial district including dyeing complex before it meets the Nakdong River, and as a result, many factors can influence the geochemistry of river water. The concentrations of dissolved ions generally increased as it flows downstream. The concentrations of cations are in the order of Ca>Na>Mg>K, and those of anions are $HCO_3$>$SO_4$>Cl>$NO_3$. These results show that the weathering of sandstone and shale containing carbonate including calcite caused the enrichment of Ca and $HCO_3$. At first 4 sampling sites, Si contents are relatively high mainly due to the weathering of silicate minerals of volcanic rocks. However, Na and $SO_4$ contents are higher at downstream sites due to the industrial and municipal sewage. Piper diagram also shows that the geochemical patterns changed from Ca-$HCO_3$ to Ca-Cl/Ca-$SO_4$ and Na-Cl/Na-$SO_4$ type. When comparing the samples collected in May and July, the concentrations of dissolved ions in July are generally lower than those in May, which indicates that dilution by precipitation played an important role. In July the relative concentration of Ca increased, indicating that Ca in soils probably from fertilizer were mixed into the river water by precipitation. The river waters are mainly from precipitation. The dissolved ions are mainly from weathering of carbonate minerals and pollutants from municipal sewage and discharged water from industrial complex. The composition of oxygen and deutrium isotope in July showed higher values, which is contrary to the amount effect, maybe due to Youngchon Dam. The nitrogen isotope showed lower values in July than those in May, which can be interpreted to indicate mixing of nitrate from soils and fertilizer in the cultivated land by the heavy rain. The isotope composition of nitrate increased downstream, indicating that the influence of sewage and animal manure also increased downstream.

The Outbreak, Maintenance, and Decline of the Red Tide Dominated by Cochlodinium polykrikoides in the Coastal Waters off Southern Korea from August to October, 2000 (2000년 여름 남해안에 나타난 Cochlodinium polykrikoides 우점 적조의 발생 특성)

  • Jung, Chang-Su;Lee, Chang-Kyu;Cho, Yong-Chul;Lee, Sam-Geun;Kim, Hak-Gyoon;Chung, Ik-Kyo;Lim, Wol-Ae
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.2
    • /
    • pp.68-77
    • /
    • 2002
  • We investigated the outbreak, maintenance, and decline of the red tide dominated by C. polykrikoides in the coastal waters off Southern Korea from August to October, 2000, by combining field data and NOAA satellite images. In general, the C. polykrikoides blooms, which have occured annually in Korean coastal waters from 1995 to 1999, initiate between late August and early September around Narodo Island and expand to the whole area of the southern coast. However, initiation and short-term change of the bloom of 2000 were quite different from the pattern observed previously. In mid-August, thermal fronts in sea surface temperature(SST) were formed: 1) between the Tsushima Warm Current Water (TWCW) and the Southern Korean Coastal Waters (SKCW), 2) between the jindo cold water mass and the southwestern coastal waters, and 3) between the upwelled cold waters in the southeast coast and the offshore warm waters. Free-living cells of C. polykrikoides were concentrated in these frontal regions. In late August, the thermal front TWCW-SKCW approached the mouth of Yeosuhae Bay where Seomjin River water and anthropogenic pollutants from the Industrial Complex of Gwangyang Bay are discharged. In the blooms of 2000 initiated in Yeosuhae Bay in late August, the dominant species, C. polykrikoides, co-occured with Alexandrum tamarense, Gymnodinium mikimotoi, Skeletonema coastatum, and Chaetoceros spp. Two typhoons, 'Prapiroon' and 'Saomai' during and the C. polykrikoides bloom probably affected the abundance of this species. After the former typhoon passed the Korean Peninsula, cell growth of C. polykrikoides was maximal, but after the latter typhoon, the C. polykrikoides bloom disappeared (20 September). On 5 October, the blooms dominated by C. polykrikoides broke out within the coastal waters of Jinhae Bay and Hansan-Keoje Bay. NOAA satellite images showed that the isothermal line of 22$^{\circ}C$ extended into Jinhae Bay. In this bloom, C. polykrikoides also occurred simultaneously with Akashiwo sanguinea(=Gym-nodinium sangunium), a common red tide-forming dinoflagellate species in fall and winter in these coastal bays.

Long-term Changes of Bathymetry and Surface Sediments in the dammed Yeongsan River Estuary, Korea, and Their Depositional Implication (영산강 하구의 수심 및 표층 퇴적물 특성의 변화와 퇴적환경)

  • KIM, YOUNG-GIL;CHANG, JIN HO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.3
    • /
    • pp.88-102
    • /
    • 2017
  • Long-term changes in bathymetry and grain size of surface sediments were investigated for understanding depositional sedimentary environments in the channelized Yeongsan River Estuary, Korea. The results revealed that an average depth of the estuary had decreased up to 2.1 m from 1982 to 2006, while it had increased to 0.3 m from 2006 to 2012. The rapid decrease of the water depth from 1982 to 2006 was due to the vast deposition of mud caused by the change of water course and flow velocity after the estuary was dammed. Meanwhile the increase of the water depth from 2006 to 2012 may be associated with multiple erosional processes, including a dredging at the southern part of the estuary and other erosions from the dike sluice expansion work. Considering the water-depth change and tidal-level variation in the study area, an depositional rate in the estuary is estimated to be 8~9 cm/yr for the last 2 decades (1982~2006). The sediments of Yeongsan River Estuary are largely composed of silt-clay mixtures: overall, silt is distributed mainly in the shallow area of the estuary edge, while clay is confined to the deep area of the estuary center. Mean grain size of the sediments is 6.0 Ø on average in 1997, 7.8 Ø on average in 2005 and 7.7 Ø on average in 2012, respectively, suggesting that the sediments became finer due to the increase of silt and clay contents in 1997~2005. Furthermore, several lines of evidences, including the comparison between the amounts of the sediment influx discharged from the Yeongsan River and the sediments in the estuary, and the changes in distribution pattern of silt and clay contents implying that they moved from offshore to estuary dike, indicate that the mud sediments are originated mainly from the offshore, not from the river.

Effects of Adsorption and Decomposition on the Removal of Total Organic Carbon (TOC) in Oil Wastewater by Cellulose-based Pseudo Graphene and Persulfate (셀룰로오스 기반 유사-그래핀과 과황산염에 의한 압연류 폐수내 총유기탄소(TOC) 흡착 및 분해효과 연구)

  • Song-I Kim;Ji-Young Shin;Kyung-Chul Park;Jae-Kyu Yang;Dong-Su Kim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.3
    • /
    • pp.5-18
    • /
    • 2024
  • Chemical oxygen demand (COD), an organic material measurement index, has a limit to the management of the total amount of all organic materials including non-degradable organic materials due to low oxidation rate. So total organic carbon (TOC) that can measure organic materials more accurately is introduced and used as a measurement index. Several environmental companies including company A in Gyeonggi-do dilute raw wastewater first and then treats it with chemicals. And an activated carbon is used at the rear stage to treat total organic carbon even though various treatment processes can be applied to reduce TOC in wastewater. There are some problems such as use of a lot of diluting water and generation of an excessive amount of sludge, so it is urgent to come up with an alternative plan. Therefore, in this study, an application experiment was conducted on two different methods for improving the TOC reduction efficiency of waste water from Company A. The first method is the evaluation of the substitution potential of powered activated carbon(PAC), an adsorbent currently used, by manufacturing cellulose-based graphene like carbon (CGLC). This first study showed that CGLC had about 10% higher TOC adsorption efficiency than commercial PAC, showing the possibility of being applied as an alternative adsorbent for PAC in water treatment sites. The second method relates to the removal of TOC by sulfate radials produced by persulfate (PS) activation. Two activation methods were applied: using CGLC and PAC as carbon-based catalyst and using the high temperature of wastewater for PS activation. As a result of using PAC and CGLC as PS activation materials, the TOC removal rate was lower than the adsorption amount of TOC by CGLC and PAC due to excessive chlorine ions present in the real wastewater. However, as a result of using the high water temperature (55~60℃) of the field wastewater for PS activation, it showed a much greater TOC removal efficiency than PAC alone, CGLC alone, and using a carbon-based catalyst for PS activation. When PS was injected more than 0.5%, it showed a TOC removal efficiency of 95% or more within 24 hr. In addition, when PS was injected more than 0.3%, the TOC concentration could be lowered to less than 75 ppm, which is the wastewater discharge standard applied to company A. When these results were summarized, raw wastewater of high temperature can be treated with a simple process of only adding of PS and discharged by treating TOC below the wastewater discharge standard applied to company A.

Analysis of Factors Affecting Retention Time in Grassed Swale (식생수로에서 유하시간에 영향을 주는 인자 분석)

  • Paek, Seoungbong;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.17 no.3
    • /
    • pp.303-310
    • /
    • 2015
  • Recently the water quality management policy gives priority to management the point source. Point pollution sources have definite emission points and are discharged to one point through a pipe. But Nonpoint pollution source (NPS) has uncertain pathway, pollutant load and runoff characteristics unlike point pollution sources, making them difficult to manage. Thus, the Korea government plans to develop and equip facilities that help reduce NPS so as to manage them more easily. But removal efficiency of Best Management Practice (BMPs) is in influenced by rainfall, hydrologic condition like natural phenomenon, so factors of removal efficiency are difficult. Thus there is a need for multilateral research about many factors that affect removal efficiency for removal facility design of proper non-point pollution. In this research, mapping, vegetation coverage and retention time were investigated in the case of factors that affect removal efficiency in grassed swale, a nature-type non-point removal facility. Grassed swale obtained changed of coverage using Braun-Blanquet within swale and retention time was obtained from point that rainfall effluent enters into swale to the time that first outflow starts. Besides, correlation analysis was obtained using pearson correlation analysis method. As a result, it was shown that removal efficiency increases as retention time is longer in grassed swale and that retention time increases as vegetation coverage is higher.