• Title/Summary/Keyword: discharge uniformity

Search Result 91, Processing Time 0.032 seconds

A Novel Approach for Controlling Process Uniformity with a Large Area VHF Source for Solar Applications

  • Tanaka, T.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.146-147
    • /
    • 2011
  • Processing a large area substrate for liquid crystal display (LCD) or solar panel applications in a capacitively coupled plasma (CCP) reactor is becoming increasingly challenging because of the size of the substrate size is no longer negligible compared to the wavelength of the applied radio frequency (RF) power. The situation is even worse when the driving frequency is increased to the Very High Frequency (VHF) range. When the substrate size is still smaller than 1/8 of the wavelength, one can obtain reasonably uniform process results by utilizing with methods such as tailoring the precursor gas distribution by adjustingthrough shower head hole distribution or hole size modification, locally adjusting the distance between the substrate and the electrode, and shaping shower head holes to modulate the hollow cathode effect modifying theand plasma density distribution by shaping shower head holes to adjust the follow cathode effect. At higher frequencies, such as 40 MHz for Gen 8.5 (2.2 m${\times}$2.6 m substrate), these methods are not effective, because the substrate is large enough that first node of the standing wave appears within the substrate. In such a case, the plasma discharge cannot be sustained at the node and results in an extremely non-uniform process. At Applied Materials, we have studied several methods of modifying the standing wave pattern to adjusting improve process non-uniformity for a Gen 8.5 size CCP reactor operating in the VHF range. First, we used magnetic materials (ferrite) to modify wave propagation. We placed ferrite blocks along two opposing edges of the powered electrode. This changes the boundary condition for electro-magnetic waves, and as a result, the standing wave pattern is significantly stretched towards the ferrite lined edges. In conjunction with a phase modulation technique, we have seen improvement in process uniformity. Another method involves feeding 40 MHz from four feed points near the four corners of the electrode. The phase between each feed points are dynamically adjusted to modify the resulting interference pattern, which in turn modulate the plasma distribution in time and affect the process uniformity. We achieved process uniformity of <20% with this method. A third method involves using two frequencies. In this case 40 MHz is used in a supplementary manner to improve the performance of 13 MHz process. Even at 13 MHz, the RF electric field falls off around the corners and edges on a Gen 8.5 substrate. Although, the conventional methods mentioned above improve the uniformity, they have limitations, and they cannot compensate especially as the applied power is increased, which causes the wavelength becomes shorter. 40 MHz is used to overcome such limitations. 13 MHz is applied at the center, and 40 MHz at the four corners. By modulating the interference between the signals from the four feed points, we found that 40 MHz power is preferentially channeled towards the edges and corners. We will discuss an innovative method of controlling 40 MHz to achieve this effect.

  • PDF

Cavitating Flow in an Impinging-type Injector (충돌형 분사기 내의 캐비테이션 유동)

  • Jo, Won Guk;Ryu, Cheol Seong;Lee, Dae Seong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.80-86
    • /
    • 2003
  • An anaysis on the discharge performance of an impinging-type injector for cavitating flow has been conducted by both numerical and experimental method. The predicted discharge coefficient for cavitating flow agrees well with the measured data showing less than 1% discrepancy. For the case of non-cavitating flow analysis, the disagreement between CFD results and the experimental data is 8%. The discharge coefficient for the cavitating flow decreases with decrease in the Reynolds number. On the other hand, it increases slightly as the Reynolds number increases for the non-cavitating flow because of the reduced viscous effect. From the present study, it is confirmed that the fact that cavitation phenomena should be included to predict accurately the discharge performance of injectors for cavitating flow regime. The uniformity of density and velocity magnitude degraded at the injector exit, and the secondary flow strength through the injector orifice accentuated due to cavitation.

Sterilization of Scoria Powder by Corona Discharge Plasma (코로나 방전 플라즈마를 이용한 화산암재 분말 살균)

  • Jo, Jin Oh;Lee, Ho Won;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.386-391
    • /
    • 2014
  • Atmospheric-pressure nonthermal corona discharge plasma was applied to the sterilization of biologically contaminated scoria powder. Escherichia coli (E. coli) culture solution was uniformly sprayed throughout the scoria powder for artificial inoculation, which was well mixed to ensure uniformity of the batch. The effect of the key parameters such as discharge power, treatment time, type of gas and electrode distance on the sterilization efficiency was examined and discussed. The experimental results revealed that the plasma treatment was very effective for the sterilization of scoria powder; 5-min treatment at 15 W could sterilize more than 99.9% of E. coli inoculated into the scoria powder. Increasing the discharge power, treatment time or applied voltage led to an improvement in the sterilization efficiency. The effect of type of gas on the sterilization efficiency was in order of oxygen, synthetic air (20% oxygen) and nitrogen from high to low. The inactivation of E. coli under the influence of corona discharge plasma can be explained by cell membrane erosion or etching resulting from UV and reactive oxidizing species (oxygen radical, OH radical, ozone, etc.), and the destruction of E. coli cell membrane by the physical action of numerous corona streamers.

Development and Application Performance of a Granular Herbicide Applicator Attached to Rice Transplanter (승용 이앙기 부착형 제초입제 살포기 개발과 살포성능)

  • 김진영;박석호;최덕규;구연충
    • Journal of Biosystems Engineering
    • /
    • v.23 no.4
    • /
    • pp.319-326
    • /
    • 1998
  • A herbicide applicator attached to a rice transplanter was developed to perform herbicide application and transplanting simultaneously. The prototype machine was composed of herbicide tank, discharge device, spinner, scattering plate and power drive. The application rate of the machine could be adjusted from 10 to 30 kg/㏊ and the application swath was 1.8m. According to the field test, application uniformity showed the range of 13.6~43.9% in terms of CV(coefficient of variation) depending on the spinner speed, application height and shape of diffuser. The best uniformity could be achieved with the spinner speed of 30.8m/s and application height of 20cm. Field efficiency of the prototype was 4.7hr/㏊. Transplanting machine has field efficiency of 4.6hr/㏊ in Korea. By attaching the herbicide applicator, field efficiency became lowed only by 0.1hr/㏊, which was counted for filling time of herbicide. Simultaneous operation of transplanting and herbicide application had a of labor saying. The weed control efficacy was measured to be 96% in field when AC140 + Stomp and Londax + YRC was applied at the 65th day after transplanting. Nonanmae was treated by manual application to be compared to.

  • PDF

The Effect of Pad Groove Density on CMP Characteristics (패드 그루브의 밀도변화가 연마특성에 미치는 영향)

  • Park Kihyun;Jung Jaewoo;Lee Hyunseop;Seo Heondeok;Jeong Seokhun;Lee Sangjik;Jeong Haedo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.27-33
    • /
    • 2005
  • Polishing pads play an important role in chemical mechanical polishing(CMP) which has recently been recognized at the most effective method to achieve global planarization. In this paper, we have investigated CMP characteristics as a change of groove density of polishing pads. The parameter $(K_n)$ is proposed to estimate groove density of pad. The $K_n$ is defined as groove area divided by pitch area. As the groove density value increased, removal rate increased to some point and then gradually saturated in case of increasing the groove density excessively. In addition Within wafer non-uniformity(WIWNU) worse as groove density increased excessively, although WIWNU improved as groove density increased. Also the uniformity of temperature of pad surface decreased as the groove density increased. It was because that the cooling effect increased as groove density increased. In other words, increasing the groove density which means the apparent contact area of pad has influence on amount of discharge of slurry during polishing process.

대기압 플라즈마를 이용한 a-Si 식각 기술

  • No, Tae-Hyeop;Seok, Dong-Chan;Yu, Seung-Yeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.142-142
    • /
    • 2013
  • DBD (Dielectric Barrier Discharge) 대기압 플라즈마를 이용한 a-Si 식각기술에 대한 연구결과를 논하고자 한다. 기술개발의 목적은 대면적 TFT-LCD 혹은 Flexible Display 공정에 적용가능한 대기압 플라즈마 식각장치의 개발 및 검증이다. 실험에서 식각 가스로는 SF6, NF3 등을 사용하였으며, 질소를 기본 가스로 사용하였다. 검증용으로 개발된 대기압 플라즈마 식각 장치는 대기압 플라즈마 장치를 연속적으로 통과하는 in-line system 형식으로 개발되었다. 검증에 사용된 대기압 플라즈마 장치는 300 mm의 방전 폭으로 1세대 LCD기판의 처리가 가능하다. 대기압 플라즈마 식각 기술 개발에서 식각율에 영향을 미치는 변수들은 기판의 온도, 식각가스의 농도, 기판의 이송속도, 기판과 플라즈마 발생장치 사이의 간격 그리고 플라즈마의 인가 전력 등으로 크게 구분지어 생각할 수 있다. 개발된 식각 장치는 SF6를 사용하는 경우 최대 환산 식각율은 500 nm/min 정도이다. 식각 기술에서 중요한 식각 Uniformity와 그와 연관된 a-Si/SiNx 식각 선택비는 사용하는 가스의 Recipe 개발에 중점을 두고 연구를 진행하였다. 식각 Uniformity는 약 7% 이내의 균일도를 갖고 a-Si/ SiNx의 선택비는 10이상의 결과를 얻었다. 또한 식각 가스는 식각 profile에 영향을 줄 수 있는데 대기압 환경에서 형성되는 collisional sheath에도 불구하고 비 등방성 식각이 가능하였다.

  • PDF

Development of Large-area Plasma Sources for Solar Cell and Display Panel Device Manufacturing

  • Seo, Sang-Hun;Lee, Yun-Seong;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.148-148
    • /
    • 2011
  • Recently, there have been many research activities to develop the large-area plasma source, which is able to generate the high-density plasma with relatively good uniformity, for the plasma processing in the thin-film solar cell and display panel industries. The large-area CCP sources have been applied to the PECVD process as well as the etching. Especially, the PECVD processes for the depositions of various films such as a-Si:H, ${\mu}c$-Si:H, Si3N4, and SiO2 take a significant portion of processes. In order to achieve higher deposition rate (DR), good uniformity in large-area reactor, and good film quality (low defect density, high film strength, etc.), the application of VHF (>40 MHz) CCP is indispensible. However, the electromagnetic wave effect in the VHF CCP becomes an issue to resolve for the achievement of good uniformity of plasma and film. Here, we propose a new electrode as part of a method to resolve the standing wave effect in the large-area VHF CCP. The electrode is split up a series of strip-type electrodes and the strip-type electrodes and the ground ones are arranged by turns. The standing wave effect in the longitudinal direction of the strip-type electrode is reduced by using the multi-feeding method of VHF power and the uniformity in the transverse direction of the electrodes is achieved by controlling the gas flow and the gap length between the powered electrodes and the substrate. Also, we provide the process results for the growths of the a-Si:H and the ${\mu}c$-Si:H films. The high DR (2.4 nm/s for a-Si:H film and 1.5 nm/s for the ${\mu}c$-Si:H film), the controllable crystallinity (~70%) for the ${\mu}c$-Si:H film, and the relatively good uniformity (1% for a-Si:H film and 7% for the ${\mu}c$-Si:H film) can be obtained at the high frequency of 40 MHz in the large-area discharge (280 mm${\times}$540 mm). Finally, we will discuss the issues in expanding the multi-electrode to the 8G class large-area plasma processing (2.2 m${\times}$2.4 m) and in improving the process efficiency.

  • PDF

Study on Thermal Comfort and Indoor Air Quality in the Classroom with System Air-conditioner and Ventilation System for Cooling Loads (시스템에어컨과 환기시스템 설치 강의실에서 냉방시 열쾌적성 및 실내공기질 연구)

  • Noh Kwang-Chul;Jang Jae-Soo;Oh Myung-Do
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.1 s.244
    • /
    • pp.57-66
    • /
    • 2006
  • The experimental and the numerical study was performed on the comparison of thermal comfort(TC) and indoor air quality(IAQ) in the lecture room for cooling loads when the operating conditions are changed. PMV value and $CO_2$ concentration of the lecture room were measured and compared with the numerical results. The numerical results showed a good agreement with the experimental one and then the numerical tool was used to analyze thermal comfort and IAQ for a couple of operating conditions. As a result it was found that the increment of the discharge angle of system air-conditioner makes TC uniformity worse, but rarely affects IAQ. Also TC and IAQ were hardly affected by the variation of the discharge airflow. Finally it turned out that TC is merely affected by the increment of the ventilation airflow, but the average $CO_2$ concentration can be satisfied with Japanese IAQ standards of classrooms when the ventilation airflow is more than $800m^3/h$ in this study.

The study on MgO formation for AC PDP prepared by R.F. reactive magnetron Sputtering (반응성 R.F. 스퍼트링에 의한 AC PDP 용 MgO형성에 관한 연구)

  • Ha, H.J.;Lee, W.G.;Nam, S.O.;Ha, S.C.;Cho, J.S.;Park, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1576-1578
    • /
    • 1996
  • MgO protection layer in ac PDP prevents the dielectric layer from sputtering of ion in discharge plasma in addition to the contribution to the memory function and also have the additional important roll in lowering the firing Voltage due to a large secondary electron emission yield(${\gamma}$). The methode of Sputtering are easy to apply on mass production and to enlarge the size of the panel and are known to have the superior Adhesion and Uniformity of thin film. MgO protection layer of $1000{\AA}$ on dielectric layer by Reactive R.F magnetron sputtering is formed. Discharge characteristics have done with the formation of protection layer.

  • PDF

Flat Fluorescent Lamp with Good Uniformity for LCD Back-Light (훌륭한 휘도 균일도를 갖는 LCD 후면 광원용 평판 형광램프)

  • Kwon, Soon-Seok;Yoon, Geel-Joong
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.1
    • /
    • pp.12-17
    • /
    • 2000
  • In this paper, the frequency characteristics of flat fluorescent lamp(FFL) using ultraviolet generated from gas discharge are studied. The lamp is a simple structure with insulator layer, phosphor layer, and gas gap(1.1mm). The firing voltage and uniform voltage was decreased with increasing the frequency. It was considered that this tendency was resulted from the space charge effect due to Xe and Ar positive ions trapped in gas gap. Luminance in FFL using Xe as discharge gas was shown 2700 cd/$m^2$ in operation (700 Vrms, 80 kHz). Hence, the maximum luminous efficiency was 5 lm/W.

  • PDF