• Title/Summary/Keyword: discharge flow

Search Result 2,054, Processing Time 0.027 seconds

Study on Flow Characteristics and Discharge Coefficient of Safety Valve for LNG/LNG-FPSO Ships (LNG / LNG-FPSO 선박용 안전밸브의 유동특성 및 유출계수에 관한 연구)

  • Kim, Sung-Jin;Jung, Sung-Yuen;Kim, Dang-Ju;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.5
    • /
    • pp.487-494
    • /
    • 2011
  • The safety valve used in LNG/LNG-FPSO ships plays an important role in maintaining a fixed level of pressure by emitting LNG gas out of the pipes in the LNG piping system. The discharge coefficient is regarded as the most important factor in the valve performance. To satisfy the ship's classification, the discharge coefficient of the safety valve must usually be over 0.8. Despite the importance of understanding the flow phenomena inside the safety valve, the valve design is usually based on experience and experiments. We carried out a computational fluid dynamics (CFD) investigation using the ANSYS-CFX software. We observed the flow phenomena inside the valve and measured the discharge coefficients according to changes in the valve lift, which is the distance between the exit of the nozzle and the lower part of the disc plate. We verified our CFD results for the discharge coefficients using available experimental data.

A Study on Ozone Generation Characteristic Using Ba-Ti-Si Ceramic Tube (세라믹(Ba-Ti-Si) 방전관의 오존발생특성)

  • Lee, Tae-Gwan;Lee, Dong-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.543-548
    • /
    • 2006
  • This paper is to be researched into ozone generation character of Bi-Ti-Si type high dielectric ceramic catalyst discharge tube. And conditions of basic experiment are the outside diameter of discharge tube : 52 mm, the length of discharge tube : 350 mm, the frequence : 900 Hz, the temperature of cooling water : $25^{\circ}C$, quantity of flow : 5, 10, 20 L/min, pressure : 1.2, 1.4, 1.6 atm, and distance of discharge gap : 0.4, 0.6, 0.8 mm. Ozone generation characteristics were measured to consumption power. At quantity of flow : 20 L/min, discharge gap : 0.6 mm, pressure : 1.6, and consumption power : 150 W, Maximum ozone generation efficiency of 175 g/kWh was obtained. And a range of maximum ozone generation efficiency was measured below the flow quantity of 20 L/min at below pressure of 1.6 atm. However, Maximum ozone generation efficiency was measured over the flow quantity of 20 L/min at over pressure of 1.6 atm.

The Study on Characteristics of High Frequency Glow Discharge in Organic Vapor (유기 가스중 고주파 글로우가전 특성에 관한 연구)

  • 이덕출;김은배;박상현;박종대
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.9
    • /
    • pp.355-360
    • /
    • 1985
  • In this paper, the discharge phenomena of high frequency glow discharge in organic vapor are basically investigted to establish the growth mechanism and preparation technique for organic thin film. According to the increasing of discharge frequency, the discharge firing voltage(Vs) of organic vapor decreases. The dependence of discharge voltage(Vd) on gas pressure is generally in accord with Paschen's Law and Vd decreases as gas flow rate become larger, but increases as dischange current density become higher. And the values of Vd in organic vapor are generally higher than those of inorganic gas.

  • PDF

Experimental study on the discharge coefficient of slope-type and step-type weirs (경사형 및 계단형 보의 유량계수 산정을 위한 실험연구)

  • Kang, Joon Gua;Kim, Jong Tae
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.12
    • /
    • pp.961-969
    • /
    • 2016
  • Due to the recent requirement of installing low-head structures considering environmental aspects, various types of fixed weir have been suggested. However, the design guideline of transverse structures for practical application is very limited. The purpose of the present study is to analyze the hydraulic properties of the fixed weirs installed at the small and middle sized rivers of Korea depending on the physical specifications to provide fundamental data that may be reflected to the design of a low-head fixed weir considering the relevant environmental aspects. The basic discharge coefficient of slope-type and step-type weirs depending on change of crest was estimated, and a stage-discharge curve was developed. In addition, the flow properties under free flow and submerged flow conditions were analyzed by varying the hydraulic conditions such as discharge and crest.

Stream flow estimation in small to large size streams using Sentinel-1 Synthetic Aperture Radar (SAR) data in Han River Basin, Korea

  • Ahmad, Waqas;Kim, Dongkyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.152-152
    • /
    • 2019
  • This study demonstrates a novel approach of remotely sensed estimates of stream flow at fifteen hydrological station in the Han River Basin, Korea. Multi-temporal data of the European Space Agency's Sentinel-1 SAR satellite from 19 January, 2015 to 25 August, 2018 is used to develop and validate the flow estimation model for each station. The flow estimation model is based on a power law relationship established between the remotely sensed surface area of water at a selected reach of the stream and the observed discharge. The satellite images were pre-processed for thermal noise, radiometric, speckle and terrain correction. The difference in SAR image brightness caused by the differences in SAR satellite look angle and atmospheric condition are corrected using the histogram matching technique. Selective area filtering is applied to identify the extent of the selected stream reach where the change in water surface area is highly sensitive to the change in stream discharge. Following this, an iterative procedure called the Optimum Threshold Classification Algorithm (OTC) is applied to the multi-temporal selective areas to extract a series of water surface areas. It is observed that the extracted water surface area and the stream discharge are related by the power law equation. A strong correlation coefficient ranging from 0.68 to 0.98 (mean=0.89) was observed for thirteen hydrological stations, while at two stations the relationship was highly affected by the hydraulic structures such as dam. It is further identified that the availability of remotely sensed data for a range of discharge conditions and the geometric properties of the selected stream reach such as the stream width and side slope influence the accuracy of the flow estimation model.

  • PDF

Effect of liquid viscosity on internal flow and spray characteristics of Y-jet atomizers (액체 점도에 따른 Y-jet 노즐 내부 유동 및 분무 특성의 변화)

  • Song, Si-Hong;Lee, Sang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.4053-4061
    • /
    • 1996
  • Internal flow characteristics within Y-jet atomizers and the local drop size distribution and cross-sectional averaged drop size at the outside were investigated with the liquid and air injection pressures, mixing port length of atomizers, and the liquid properties taken as parameters. To examine the effect of the liquid viscosity, glycerin-water mixtures were used in this study. The liquid viscosity plays only a minor role in determining the internal flow pattern and the spatial distribution shape of drops, but the drop sizes themselves generally increase with increasing of the liquid viscosity. An empirical correlation for the liquid discharge coefficient at the liquid port was deduced from the experimental results; the liquid discharge coefficient strongly depends on the liquid flow area at the mixing point which is proportional to the local volumetric quality(.betha.$_{Y}$), and the volumetric quality was included in the correlation. Regardless of the value of the liquid viscosity, the compressible flow through the gas port was well represented by the polytropic expansion process(k=1.2), and the mixing point pressure could be simply correlated to the aspect ratio( $l_{m}$/ $d_{m}$) of the mixing port and the air/liquid mass flow rate ratio( $W_{g}$/ $W_{f}$) as reported in the previous study.udy.udy.y.

Numerical Analysis on the $2^{nd}$ Discharae-passase In Reciprocating Compressor (왕복동식 수소압축기의 2단 토출통로 유동해석)

  • Lee, G.H.;Rahman, M. Sq.;Kim, C.P.;Joung, T.W.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.3
    • /
    • pp.27-32
    • /
    • 2009
  • Numerical analysis information of a complex discharge-passage will be very useful to improve hydrogen compression system. General information about an internal gas flow is presented by numerical analysis approach. Relating with hydrogen compressing system, which have an important role in hydrogen energy utilization, this should be a useful tool to observe the flow quickly and clearly. Flow characteristic analysis, including pressure and turbulence kinetic energy distribution of hydrogen gas from cylinder going to the chamber of a reciprocating compressor are presented in this paper. Discharge-passage model is designed based on real model of hydrogen compressor. Pressure boundary conditions are applied considering the real condition of operating system. The result shows pressure and turbulence kinetic energy are not distributed uniformly along the passage of the hydrogen compressing system. Path line or particles tracks help to demonstrate flow characteristics inside the passage. The existence of vortices and flow direction can be precisely predicted. Based on this result, the design improvement should be done. Consequently, development of the better hydrogen compressing system will be achieved.

  • PDF

Pollutant Load Delivery Ratio for Flow Duration at the Chooryeong-cheon Watershed (추령천 유역의 유황별 유달율 계산)

  • Kim, Young-Joo;Yoon, Kwang-Sik;Son, Jae-Gwon;Choi, Jin-Kyu;Chang, Nam-Ik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.4
    • /
    • pp.19-26
    • /
    • 2010
  • To provide the basic information for the water quality management of the Sumjin River Basin, delivery ratios for flow duration were studied. Using the day-interval data set of discharge and water quality observed from the Chooryeong-cheon watershed, the flow-duration and discharge-load relation curves for the watershed were established, then the load-duration curve was constructed. Delivery ratios for flow duration were also developed. Delivery ratios showed wide variation according to flow conditions. In general, delivery ratio of high flow condition showed higher value reflecting nonpoint source pollution contribution from the forest dominating watershed. To resolve this problem, a regression model explaining the relation between flow rate and delivery ratio was suggested. The delivery ratios for different flow regime could be used for pollutant load estimation and TMDL (Total maximum daily load) development.

Discharge Computation from Float Measurement in Vegetated Stream (부자 측정 시 식생을 고려한 유량산정에 관한 연구)

  • Lee, Tae Hee;Jung, Sung Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.307-316
    • /
    • 2019
  • Development of vegetation in stream channel increases resistance to flow, resulting in increase in river stage upon flood and affecting change in stage-discharge relationship. Vegetation revealed in stream by water level reaching a peak and then declined upon flood is mostly found as prone. Taking an account of flow distribution with the number of vegetation, prone vegetation layer might be at height where discharge rate is zero (0) (Stephan and Guthnecht, 2002). However, there is a tendency that flow rate is overestimated when applying the height of river bed to flow area with no consideration of the height of vegetation layer in flow rate by float measurement. In this study, reliable flow measurement in stream with vegetation was calculated by measuring the height of vegetation layer after flood and excluding the vegetation layer-projected area from the flow area. The result showed the minimum 4.34 % to maximum 10.82 % of flow deviation depending on the scale of discharge. Accordingly, reliable velocity-area methods would be determined if vegetation layer-projected area in stream is considered in flow rate estimation using the flow area during the flood.

Analysis of Hydrodynamic Characteristics Apply to Nature-Friendly Stream Protection Method (자연형 호안공법을 적용한 소하천의 수리특성 분석)

  • Lee, Gang-Seuk;Park, Jong-Hwa;Yeon, Kyu-Bang
    • KCID journal
    • /
    • v.17 no.2
    • /
    • pp.71-81
    • /
    • 2010
  • Stream Pilot Project, which began in May 2003 and finished in December 2003, was selected to develop effective methods applicable to nature-like streams. Stream restoration projects aim to maintain or increase ecosystem goods and services while protecting downstream and coastal ecosystems. Fields environmental monitoring such as flow discharge and precipitation were conducted along the Idong stream for amount of channel zone change in 2007. This study selected three monitoring positions to measure the water level and discharge of flowing water. A stage-discharge relation is obtained from direct discharge measurements for three stations by fitting an empirical relationship to the data set. Since discharge measures are made only for low flow conditions, a curve of discharge against stage can then be built by fitting these data with a power curve. And this study used data obtained from floodmark checkup as well as HEC-RAS model to analyze the hydrodynamic characteristics of monitoring sites. Reach-averaged hydraulic parameters for the supply reach were calculated from the small area's HEC-RAS model for Idong stream, and a HEC-RAS model used to analyze hydraulics for a period in 2007, after the stream was considered bank stabilization.

  • PDF