• Title/Summary/Keyword: disaster sites

Search Result 373, Processing Time 0.534 seconds

Displacement Analysis of an Excavation Wall using Inclinometer Instrumentation Data, Banyawol Formation, Western Daegu (경사계를 이용한 대구 서부지역 반야월층 굴착 지반의 변위 분석)

  • Ihm, Myeong-Hyeok
    • The Journal of Engineering Geology
    • /
    • v.23 no.1
    • /
    • pp.47-55
    • /
    • 2013
  • To analyze lateral displacement of excavation walls exposed during the construction of Subway Line 1 in the Daegu region, inclinometer measurement data for sites D4, D5, and Y6 are investigated from the perspective of engineering geology. The study area, in the Banyawol Formation, Hayang Group, Gyeongsang Supergroup, is in the lower part of bedrock of andesitic volcanics, calcareous shale, sandstone, hornfels, and felsite dykes that are unconformably overlain by soil. The rock mass around the D4 site is classified as RMR-V grade and the maximum lateral displacement of 101.39 mm, toward N34W, was measured at a bedding-parallel fault, at a depth of 12 m. The rock mass around the D5 site is classified as RMR-IV grade and the maximum lateral displacement of 55.17 mm, toward the south, was measured at a lithologic contact between shale and felsite, at a depth of 14 m. The rock mass around the Y6 site is classified as RMR-III grade and the maximum lateral displacement of 12.65 mm, toward S52W, was measured at an unconformity between the soil and underlying bedrocks, at a depth of 7 m. The directions of lateral displacement in the excavation walls are vector sums of the directions perpendicular to the excavation wall and horizontally parallel to the excavation wall. Lateral displacement graphs according to depth in the soil profile show curvilinear trajectories, whereas those in bedrock show straight and rapid-displacement trajectories.

Estimation of Gas-particle partitioning Coefficients (Kp) of Carcinogenic polycyclic Aromatic hydrocarbons in Carbonaceous Aerosols Collected at Chiang - Mai, Bangkok and hat-Yai, Thailand

  • Pongpiachan, Siwatt;Ho, Kin Fai;Cao, Junji
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2461-2476
    • /
    • 2013
  • To assess environmental contamination with carcinogens, carbonaceous compounds, water-soluble ionic species and trace gaseous species were identified and quantified every three hours for three days st three different atmospheric layer at the heart of chiang-Mai, bangkok and hat-Yai from December 2006 to February 2007. A DRI model 2001 Themal/Optical Carbon Analyzer with the IMPROVE thermal/optical reflectance (TOR) protocol was used to quantify the organic carbon(OC) and elemental carbon content in $PM_{10}$. Diurnal and vertical variability was also carefully investigated. In general, OC and EC contenttration shoeed the highest values at the monitoring period o 21.00-00.00 as consequences of human activities at night bazaar coupled with reduction of mixing layer, decreased wind speed and termination of photolysis nighttime. Morning peaks of carboaceous compounds were observed during the sampling period of 06:00 -09:00, emphasizing the main contribution of traffic emission in the three cities. The estimation of incremental lifetime partculate matter exposure (ILPE) raises concern of high risk of carbonaceous accumulation over workers and residents living close to the observatory sites. The average values of incremental lifrtime particulate matter exposure (ILPE) of total carbon at Baiyoke Suit Hotel and Baiyoke Sky Hotel are approsimately ten time shigher then those air sample collected at prince of songkla University Hat-Yai campus corpse incinerator and fish-can maufacturing factory but only slightly higher than those of rice straw burnig in Songkla province. This indicates a high risk of developing lung cancer and other respiratory diseases across workers and residents living in high buildings located in Pratunam area. Using knowledge of carbonaceous fractions in $PM_{10}$, one can estimate the gas-particle partitioning of polycyclic aromatic hydrocarbons (PAHs). Dachs-Eisenreich model highlights the crucial role of adsorption in gas-particle partitioning of low molecular weight PAHs, whereas both absorption and adsorption tend to account for gas-particle partitioning of high molecular weight PAHs in urban residential zones of Thailand. Interestingly, the absorption mode alone plays a minor role in gas-partcle partitiining of PAHs in Chiang-Mai, Bangkok and hat-Yai.

An Optimal Design Algorithm of Pile Supported Foundations of Tower Cranes (타워크레인의 파일기초 최적설계 알고리즘 개발)

  • Ryu, Sang-Yeon;Seo, Deok-Seok;Kim, Sun-Kuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.5
    • /
    • pp.95-101
    • /
    • 2009
  • As buildings increase in height, lifting plans are becoming increasingly important on construction sites. As a critical piece of load-lifting equipment, the tower crane deserves a well thought-out stability review, since it has a significant impact and is very vulnerable to structural safety disaster. To ensure the structural stability of a tower crane, its lateral support or pile supported foundation designs must include consideration for stability, and pile foundation must be used if site conditions prevent soil from providing the required bearing capacity, or prevent the foundation from being increased to the required extent. Pile supported foundation design requires thorough and systematic review, as more stability parameters need to be considered than with an independent foundation. This paper intends to develop an optimal design algorithm that can minimize associated costs while ensuring the fundamental stability of pile supported foundation design, limiting the scope of research to fixed-type trolley tower cranes using pile supported foundations. The findings herein on pile foundation stability review parameters, process and optimal design are expected to improve the operational efficiency of staff concerned, and reduce the time and efforts required for pile foundation design.

Evaluation on Geological Structures to Secure Long-term Safety of Nuclear Facility Sites (원자력시설물 부지의 장기적 안전성 확보를 위한 지질구조 평가)

  • Jin, Kwangmin;Kim, Young-Seog
    • Economic and Environmental Geology
    • /
    • v.51 no.2
    • /
    • pp.149-166
    • /
    • 2018
  • Many large earthquakes have continuously been reported and resulted in significant human casualties and extensive damages to properties globally. The accident of Fukushima nuclear power plant in Japan was caused by a mega-tsunami, which is a secondary effect associated with the Tohoku large earthquake (M=9.0, 2011. 3. 11.). Most earthquakes occur by reactivation of pre-existing active faults. Therefore, the importance of paleoseismological study have greatly been increased. The Korean peninsula has generally been considered to be a tectonically stable region compared with neighboring countries such as Japan and Taiwan, because it is located on the margin of the Eurasian intra-continental region. However, the recent earthquakes in Gyeongju and Pohang have brought considerable insecurity on earthquake hazard. In particular, this region should be secure against earthquake, because many nuclear facilties and large industrial facilities are located in this area. However, some large earthquakes have been reported in historic documents and also several active faults have been reported in southeast Korea. This study explains the evaluation methods of geological structures on active fault, fault damage zone, the relationship between earthquake and active fault, and respect distance. This study can contribute to selection of safe locations for nuclear facilities and to earthquake hazards and disaster prevention.

A Study on Continuous long-term Wave Observation using Remote Monitoring System (원격모니터링을 이용한 연속파랑관측에 관한 연구)

  • Shin, Bumshick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.654-659
    • /
    • 2018
  • In this study, continuous long-term observation is implemented with an ocean radar. Ocean radar conducts remote observation (combined) with ground-based radars, which enable a series of simultaneous observations of an extensive range of the coast with high frequency. An ocean radar for continuous long-term observation is operated at Samcheok on the east coast of Korea. Samcheok experienced tsunami damage in recent years and is the location of a nuclear power plant. In order to examine the reliability of the ocean radar, a pressure-type wave gauge, ultrasonic wave gauge, and ocean buoy are installed for the purpose of data comparison and verification. The ocean radar used in this study is an array-type HF-RADAR named WERA (WavE RAdar). The analysis of the data obtained from continuous long-term observations showed that the radar observations were in agreement with more than 90% of the wave data collected within a 25 km range from the center of two sites. Less than 1% of the entire observation data was unmeasured by the time series analysis. As a result of comparing the radar data with the direct observations made by the wave gauge, it was inferred that the RMS deviation is less than 20cm and the correlation coefficient was in the range of 0.84 ~ 0.87. Moreover, supported by such observations, a comprehensive monitoring system is being developed to provide the public with real-time reports on waves and currents via the internet.

Evaluating Geomorphological Classification Systems to Predict the Occurrence of landslides in Mountainous Region (산사태 발생예측을 위한 지형분류기법의 비교평가)

  • Lee, Sooyoun;Jeong, Gwanyong;Park, Soo Jin
    • Journal of the Korean Geographical Society
    • /
    • v.50 no.5
    • /
    • pp.485-503
    • /
    • 2015
  • This study aims at evaluating geomorphological classification systems to predict the occurrence of landslides in mountainous region in Korea. Geomorphological classification systems used in this study are Catena, TPI, and Geomorphons. Study sites are Gapyeong-gun, Hoengseong-gun, Gimcheon-si, Yeoju-si/Yicheon-si in which landslide occurrence data were collected by local governments from 2001-2014. Catena method has objective classification standard to compare among regions objectively and understand the result intuitively. However, its procedure is complicated and hard to be automated for the general public to use it. Both TPI and Geomorphons have simple procedure and GIS-extension, therefore it has high accessibility. However, the results of both systems are highly dependent on the scale, and have low relevance to geomorphological formation process because focusing on shape of terrain. Three systems have low compatibility, therefore unified concept are required for broad use of landform classification. To assess the effectiveness of prediction on landslide by each geomorphological classification system, 50% of geomorphological classes with higher landslide occurrence are selected and the total landslide occurrence in selected classes are calculated and defined as 'predictive ability'. The ratio of terrain categorized by 'predictive ability' to whole region is defined as 'vulnerable area ratio'. An indicator to compare three systems which is predictive ability divided by vulnerable area ratio was developed to make a comprehensive judgment. As a result, Catena ranked the highest in suitability.

  • PDF

Slope Stability by Variation of Rainfall Characteristic for Long Period (장기간 강우특성 변화에 따른 국내 사면의 안정성)

  • Lee, Jeong-Ju;Kim, Jae-Hong;Hwang, Young-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.6
    • /
    • pp.51-59
    • /
    • 2014
  • Shallow landslides and debris flows are a common form of soil slope instability in South Korea. These events may be generally initiated as a result of intense rainfall or lengthening rainfall duration because of the effects of climate change. This paper presents the evaluation of rainfall-induced natural soil slope stability and reinforced soil slope instability under vertical load (railway or highway load) throughout South Korea based on quantitative analysis obtained from 58 sites rainfall observatories for 38 years. The slope stability was performed for infinite and geogrid-reinforced soil slopes by taking an average of maximum rainfall every ten years from 1973 to 2010. Seepage analysis is carried out on unsaturated soil slope using the maximum rainfall at each site, and then the factor of safety was calculated by coupled analysis using saturated and unsaturated strength parameters. The contour map of South Korea shows four stages in 10-year-time for the degree of landslide hazard. The safety factor map based on long term observational data will help prevent rainfall-induced soil slope instability for appropriate design of geotechnical structures regarding disaster protection.

Analysis of Quarrying and Restoration Characteristics on Quarry in Korea (국내 토석사업장의 토석채취 및 복구특성 분석)

  • Park, Jae-Hyeon;Kim, Ki-Dae;Kang, Min-Jeng
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.2
    • /
    • pp.223-230
    • /
    • 2016
  • This study was carried out to investigate the quarrying and restoration characteristics on quarry in Korea. We researched quarrying and restoration status, analyzed the relationship between restoration area and permitted period, permitted area, quarrying volume, pit slope width, height, and berm width from 55 quarry sites. Most of the quarries were located in the following conditions : mixed forest, average altitude of less than 300 m, average mountain slope of $61^{\circ}$<, hillside, granite and landslide hazard class. Major quarrying characteristics were permitted period of 6~10 years, permitted area of less than 10 ha, quarrying volume of less than $1,000,000m^3$, a stone type of aggregate, a quarrying type of terrace, pit slope of $61^{\circ}$< Most quarries were restored by themselves, and the main restoration type was slope greening. Also, area ratio of flatland, pit slope, and berm was 54.9:39.6:5.5. Ccorrelation analysis showed that quarrying area was positively correlate with quarrying volume (${\alpha}=0.01$), permitted area, pit width, and pit height (a=0.05).

Distribution of Bacterial Angular Leaf Spot of Strawberry and Characterization of Xanthomonas fragariae Strains from Korea (한국의 딸기세균모무늬병 발생분포 및 딸기세균모무늬병균 특성조사)

  • Yoon, Myung-Ju;Myung, Inn-Shik;Lee, Jae-Yeon;Kim, You-Shin;Lee, Yong-Hwan;Kim, Dae-Young;Lee, Young-Ki
    • Research in Plant Disease
    • /
    • v.22 no.1
    • /
    • pp.9-17
    • /
    • 2016
  • Nationwide survey for angular leaf spot (ALS) of strawberry caused by Xanthomonas fragariae, a quarantine disease in Korea, was performed in November 2012. In the survey, ALS was observed in eighty eight farmers' fields of Sukok, Jinju and Okjong, Hadong in Gyeongnam Province, and one field in Namwon of Jeollabuk Province. The infected field of Namwon closed immediately after the disease diagnosed ALS. In detailed survey of Sukok and Okjong areas during February 2012 to January 2015, ALS occurrence decreased from 45% farmer's fields on December 2012 to 5% on January 2015, and from 38% on November 2013 to 5% on January 2015, respectively. Phenotypic characteristics of the Korean strains were similar to those of the type strain of X. fragariae. A multilocus sequence analysis of Korean strains of X. fragariae was conducted using four genes; dnaK, fyuA, gyrB, and rpoD. All the Korean strains had the same sequences of the four genes. The concatenated sequences of the Korean strains shared 100% with that of the type strain of X. fragariae. All strawberry cultivars tested were susceptible to the strains of X. fragariae two weeks after inoculation. The inoculated sites were necrosis and expanded, which were rated 4 based on evaluation of inoculation site.

Estimation of Slime Thickness of Bored Piles by Using Borehole Electrical Resistivity Method (시추공 전기비저항 기법을 활용한 현장타설말뚝의 슬라임층 두께 평가)

  • Chun, Ok-Hyun;Lee, Jong-Sub;Park, Min-Chul;Bae, Sung-Gyu;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.3
    • /
    • pp.51-60
    • /
    • 2013
  • The slime, deposited in the bored pile due to falling soil particle, reduces the bearing capacity of bored pile and thus the stability of construction also decreases. The weight pendulum and iron have been used for estimating the slime thickness based on the subjective judgment and thus the previous method has a limitation of reliability. The objective of this paper is to suggest the method for estimating the slime thickness by using characteristics of electrical resistivity as scientific method. The temperature-compensation resistivity probe (TRP), which has a conical shape and the diameter of 35.7mm, is applied to the measurement of the electrical resistivity in the borehole during penetration. The field tests are carried out for estimating the slime thickness in the application site of bored pile. The slime thickness is calculated through the difference between excavation depth of borehole and measured data. Furthermore, the laboratory tests are also conducted for investigating effects of casing, time elapsing and relative density by using the specimen of slime. The laboratory test supporting the suggested method is reasonable for determining the slime depth. The paper suggests that the electrical resistivity method may be a useful method for detecting slime thickness and the method is expected to be applicable to various sites of bored piles.