• Title/Summary/Keyword: disaster safety

Search Result 2,769, Processing Time 0.027 seconds

Fire Risk Index and Grade Evaluation of Combustible Materials by the New Chung's Equation-XII (새로운 Chung's equation-XII에 의한 연소성 물질의 화재위험성지수 및 등급 평가)

  • Yeong-Jin Chung;Eui Jin
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.388-396
    • /
    • 2023
  • The evaluation of fire risk for combustible materials was carried out using Chung's equations-X, Chung's equations-XI, and Chung's equation-XII, which were newly established. The fire risk index-XII (FRI-XII) and fire risk rating (FRR) were calculated for specimens including camphor tree, cherry, rubber tree, and elm. The combustion characteristics were determined using a cone calorimeter according to ISO 5660-1. Chung's equations caculated the fire performance index-X (FPI-X) and fire growth index-X (FGI-X) values ranged from 89.34 to 1696.75 s2 /kW and from 0.0006 to 0.0107 kW/s2 , respectively. In addition, the fire performance index-XI (FPI-XI) and fire growth index-XI (FGI-XI) varied from 0.08 to 1.48 and from 0.67 to 11.89, respectively. The fire risk index-XII (FRI-XII), which is an indicator of fire risk, showed that camphor tree had a value of 148.63 (fire risk rating: G), indicating a very high fire risk. This suggests that combustible materials with a high concentration of volatile organic compounds have lower FPI-X and FPI-XI values, higher FGI-X and FGI-XI values, and consequently higher FRI-XII values, indicating an increased fire risk.

Lateral Earth Pressures Acting on Anchored Diaphragm Walls and Deformation Behavior of Walls during Excavation (지하굴착시 앵커지지 지중연속벽에 작용하는 측방토압 및 벽체의 변형거동)

  • Hong, Won-Pyo;Lee, Moon-Ku;Lee, Jae-Ho;Yun, Jung-Mann
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.77-88
    • /
    • 2007
  • Lateral earth pressure and horizontal displacement of the diaphragm walls constructed in multi-soil layers were analyzed by the field instrumentation from six building construction sites in urban area. The distribution of the developed earth pressure of the anchored diaphragm walls during excavation shows approximately a trapezoid diagram. The maximum earth pressure of anchored diaphragm walls corresponds to $0.45{\gamma}H$ and the earth pressure acts at the upper part of the walls. The maximum earth pressure is two times larger than the empirical earth pressure of flexible walls in sands suggested by Terzaghi and Peck(1967), Tschebotarioff(1973), and Hong and Yun(1995a). The horizontal displacement of diaphragm walls is closely related with supporting systems such as struts, anchors, and so on. The horizontal displacement of anchored walls shows less than 0.1 percent of the excavated depth, and the horizontal displacement of strutted walls shows less than 0.25 percent of the excavated depth. Therefore, the restraining effect of horizontal displacement to the anchored diaphragm walls is larger than the strutted diaphragm walls. In addition, since the horizontal displacement of the diaphragm walls is lower than the criterion, $\delta=0.25%H$, used for control the anchored retention wall using soilder piles, the safety of excavation sites applied with the diaphragm walls is pretty excellent.

Leading, Coincident, Lagging INdicators to Analyze the Predictability of the Composite Regional Index Based on TCS Data (지역 경기종합지수 예측 가능성 검토를 위한 TCS 데이터 선행·동행·후행성 분석 연구)

  • Kang, Youjeong;Hong, Jungyeol;Na, Jieun;Kim, Dongho;Cheon, Seunghun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.209-220
    • /
    • 2022
  • With the worldwide spread of African swine fever, interest in livestock epidemics has increased. Livestock transport vehicles are the main cause of the spread of livestock epidemics, but there are no empirical quarantine procedures and standards related to the mobility of livestock transport vehicles in South Korea. This study extracted the trajectory of livestock-related vehicles using the facility-visit history data from the Korea Animal Health Integrated System and the DTG (Digital Tachograph) data from the Korea Transportation Safety Authority. The results are presented as exposure indices aggregating the link-time occupancy of each vehicle. As a result, 274,519 livestock-related vehicle trajectories were extracted, and the exposure values by link and zone were derived quantitatively. This study highlights the need for prior monitoring of livestock transport vehicles and the establishment of post-disaster prevention policies.

Evaluation of Levee Reliability by Applying Monte Carlo Simulation (Monte Carlo 기법에 의한 하천제방의 안정성 평가)

  • Jeon, Min Woo;Kim, Ji Sung;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.501-509
    • /
    • 2006
  • The safety of levee that depends on the river flood elevation has been regarded as very important keys to build up various flood prevention systems. However, deterministic methods for computation of water surface profile cannot reflect the effect of possible inaccuracies in the input parameters. The purpose of this study is to develop a methodology of uncertainty computation of design flood level based on steady flow analysis and Monte Carlo simulation. This study addresses the uncertainty of water surface elevation by Manning's coefficients, design discharges, river cross sections and boundary condition. Monte Carlo simulation with the variations of these parameters is performed to quantify the variations of water surface elevations in a river. The proposed model has been applied to the Kumho-river. The reliability analysis was performed within 38.5 km (95 sections) reach considered the variations of the above-mentioned parameters. Overtopping risks were evaluated by comparing the elevations of the flood condition with the those of the levees. The results show that there is a necessity which will raise the levee elevation between 1 cm and 56 cm at 7 sections. The model can be used for preparing flood risk maps, flood forecasting systems and establishing flood disaster mitigation plans as well as complement of conventional levee design.

A Study on Occupational Environment Assessment Strategies for Respirable Particulate Matter at Coal-Fired Power Plants (석탄화력발전소 호흡성분진 작업환경 평가 전략 사례에 관한 연구)

  • Eun-Seung Lee;Yun-Keun Lee;Dong-Il Shin
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.3
    • /
    • pp.375-383
    • /
    • 2023
  • Objectives: Coal-fired power plants feature diverse working conditions, including multi-layered employment structures and irregular work cycles due to outsourcing and non-standardized tasks. The current uniform occupational environment measurement systems have limitations in accurately assessing and evaluating these varied conditions. This study aims to propose alternative measurement and assessment strategies to supplement existing methods. Methods: Major domestic coal-fired power plants were selected as the study targets. To prepare for the study and establish strategies, work processes were identified and existing occupational environment measurement results were compared and analyzed. The study proceeded by employing three strategies: specific exposure groups (SEGs) measurement, continuous monitoring, and supplementary measurements, which were then compared and discussed. Results: Previous exposure index evaluations (5,268 cases) indicated that crystalline silica, a type of respirable particulate matter, had detection limits below the threshold (non-detectable) in 82.6% (4,349 cases) of instances. Exposures below 10% of the exposure limit were observed at a very low concentration of 96.1%. Similar exposure group measurements yielded results where detection limits were below the threshold in 38.2% of cases, and exposures below 10% of the limit were observed in 70.6%. Continuous monitoring indicated detection limits below the threshold in 12.6% of cases, and exposures below 10% of the limit were observed in 75.6%. Instances requiring active workplace management accounted for more than 30% of cases, with SEGs at 11.8% (four cases), showing a higher proportion compared to 3.0% (four cases) in continuous monitoring. For coal dust, exposures below 10% of the limit were highest in legal measurements at 90.2% (113 cases), followed by 74.0% (91 cases) in continuous monitoring, and 47.0% (16 cases) in SEGs. Instances exceeding 30% were most prevalent in SEGs at 14.7% (five cases), followed by legal measurements at 5.0% (eight cases), and continuous monitoring at 2.4% (three cases). When examining exposure levels through arithmetic means, crystalline silica was found to be 104.7% higher in SEGs at 0.0088 mg/m3 compared to 0.0043 mg/m3 in continuous monitoring. Coal dust measurements were highest in SEGs at 0.1247 mg/m3, followed by 0.1224 mg/m3 in legal measurements, and 0.0935 mg/m3 in continuous monitoring. Conclusions: Strategies involving SEGs measurement and continuous monitoring can enhance measurement reliability in environments with irregular work processes and frequent fluctuations in working conditions, as observed in coal-fired power plants. These strategies reduce the likelihood of omitting or underestimating processes and enhance measurement accuracy. In particular, a significant reduction in detection limits below the threshold for crystalline silica was observed. Supplementary measurements can identify worker exposure characteristics, uncover potential risks in blind spots of management, and provide a complementary method for legal measurements.

A study on Korean welfare policy examined through Mokminsimseo (목민심서를 통해 한국적 복지정책에 대한 연구)

  • kim Bong wha
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.669-674
    • /
    • 2023
  • This study examined the specific contents of social welfare policies of the Joseon Dynasty through the analysis of Mokminsimseo, Aemin Sixjo and Jinhwang Yukjo, and identified the connection between them and today's social welfare policies. As a result, In the Care of the People, it contained the basic contents of the Elderly Welfare Act and welfare services for the elderly, and in the Freedom, it included welfare policy services related to infants and children, and the value system of welfare for the disabled through government affairs. The policy direction was confirmed, and it was found that disaster relief calls for social integration in response to social crises and disasters. This also confirmed that major areas of social welfare policy such as family safety, income security, health policy, and social integration have been emphasized through social welfare policy indicators. In addition, through the analysis of Qinhwangyukjo, it was found that it contains not only the basic ideology and values of the social security system and social insurance system in terms of visa, scale, and power, but also the details of specific policy implementation. Today's social welfare policies and social service policies, which are equipped with social welfare facilities and are implementing systematic social welfare services for each target, were able to confirm their foundation through the Qinhwangyukjo. This confirms that the emphasis on social integration and income security is prominent in the Qinhwangyukjo through the social welfare policy indicators of the current policy system.

Optimization of Sensor Location for Real-Time Damage assessment of Cable in the cable-Stayed Bridge (사장교 케이블의 실시간 손상평가를 위한 센서 배치의 최적화)

  • Geon-Hyeok Bang;Gwang-Hee Heo;Jae-Hoon Lee;Yu-Jae Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.172-181
    • /
    • 2023
  • In this study, real-time damage evaluation of cable-stayed bridges was conducted for cable damage. ICP type acceleration sensors were used for real-time damage assessment of cable-stayed bridges, and Kinetic Energy Optimization Techniques (KEOT) were used to select the optimal conditions for the location and quantity of the sensors. When a structure vibrates by an external force, KEOT measures the value of the maximum deformation energy to determine the optimal measurement position and the quantity of sensors. The damage conditions in this study were limited to cable breakage, and cable damage was caused by dividing the cable-stayed bridge into four sections. Through FE structural analysis, a virtual model similar to the actual model was created in the real-time damage evaluation method of cable. After applying random oscillation waves to the generated virtual model and model structure, cable damage to the model structure was caused. The two data were compared by defining the response output from the virtual model as a corruption-free response and the response measured from the real model as a corruption-free data. The degree of damage was evaluated by applying the data of the damaged cable-stayed bridge to the Improved Mahalanobis Distance (IMD) theory from the data of the intact cable-stayed bridge. As a result of evaluating damage with IMD theory, it was identified as a useful damage evaluation technology that can properly find damage by section in real time and apply it to real-time monitoring.

Study on the Occurrence of Tunnel Damage when a Large-scale Fault Zone Exists at the Top and Bottom of a Tunnel (대규모 단층대가 터널 상하부에 존재하는 조건에서 터널 변상 사례 연구)

  • Jeongyong Lee;Seungho Lee;Nagyoung Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.12
    • /
    • pp.53-60
    • /
    • 2023
  • Recently, along with the improvement of high-speed rail and road design speed, the proportion of tunnel construction work is increasing proportionally. In particular, the construction of long tunnels is rapidly increasing due to the mountainous terrain of our country. In this way, due to the trend of tunnels becoming longer, it is difficult to design and construct tunnels by avoiding fault zones. In the case of tunnel construction in mountainous areas, ground investigation is often difficult even during design due to the topographical conditions, making precise ground investigation difficult, and as a result, the upper part of the tunnel is damaged during tunnel construction. When fault zones, which are vulnerable to weathering, exist, the stability of the tunnel during excavation is directly affected by the fault zone distribution, strength characteristics, and groundwater distribution range. In particular, when a fault zone is distributed in the upper part of a tunnel, damage such as tunnel collapse and excessive displacement may occur, and in order to prevent this in advance, countermeasures must be established through analysis of similar cases. Therefore, in this study, when a large-scale fault zone exists in the upper part of a tunnel, the relationship and characteristics of damage to the tunnel structure were analyzed.

Numerical analysis of geomorphic changes in rivers due to dam pulse discharge of Yeongju Dam (댐 펄스방류로 인한 하천의 지형변화 수치모의 분석(영주댐 중심으로))

  • Baek, Tae Hyoa;Jang, Chang-Laeb;Lee, Kyung Su
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.871-881
    • /
    • 2023
  • This study investigates the geomorphic changes and Bed Relief Index of the river downstream of the Yeongju Dam by Nays2DH, a two-dimensional numerical model, in order to grasp the dynamics of the downstream river while applying various flow patterns such as pulse discharge. It shows that the geomorphic and the bed elevations changes are the largest under the condition of the normalized pulse discharge. The total change in the riverbed is 29.88 m for uniform flow, 27.46 m for normalized hydrograph, 29.63 m for pulse flow and 31.87 m for pulse flow with normalized hydrograph which result in the largest variation in scour and deposition. The Bed Relief Index (BRI) increases with time under conditions of uniform flow, pulse flow and pulse flow with normalized hydrograph. However, BRI increased rapidly until 30 hrs after the peak flow (14 hrs), but decreased from 56 hrs under the condition of normalized hydrograph. Therefore, the condition of normalized hydrograph gives greater dynamics than the condition of a single flood or constant flow, and the dynamics increase downstream than upstream, resulting in an effect on improving the environment of the river downstream of the dam.

Evaluation on Odor Removal Performance of Bacteria-Based Odor Reduction Kit for Revetment Blocks (호안블록용 박테리아 기반 악취저감 키트의 악취제거 성능평가)

  • Keun-Hyoek Yang;Ju-Hyun Mun;Ki-Tae Jeong;Hyun-Sub Yoon;Jae-Il Sim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.229-238
    • /
    • 2024
  • This study evaluated the odor removal performance of a bacteria-based odor reduction kit. The bacteria used were Rhodobacter capsulatus, Paracoccus limosus, and Brevibacterium hankyongi, which can remove ammonia (NH3), hydrogen sulfide (H2S), total nitrogen (T-P), and total phosphorus (T-N), which are odor pollutants. The materials used were bacteria and porous aggregates (expanded vermiculite, zeolite beads, activated carbon), and the combination of the materials varied depending on the removal mechanism. Materials with a physical adsorption mechanism (zeolite beads and activated carbon) gradually slowed down the concentration reduction rate of odor pollutants (NH3, H2S, T-P, and T-N), and had no further effect on reducing the concentration of odor pollutants after 60 hours. Expanded vermiculite, in which bacteria that remove odors through a bio-adsorption mechanism were immobilized, had a continuous decrease in concentration, and the concentration of odor pollutants reached 0 ppm after 108 hours. As a result, the odor removal performance of materials with physical adsorption mechanisms in actual river water did not meet the odor emission standard required by the Ministry of Environment, while the expanded vermiculite immobilized with bacteria satisfied the odor emission permissible standard and achieved water quality grade 1.