• Title/Summary/Keyword: disaster prediction

Search Result 483, Processing Time 0.029 seconds

A study of extract common I/O parameter for design of complex disaster prediction model (복합재난 예측 모형 설계를 위한 공통 입출력 파라미터 도출 연구)

  • Lee, Byung-Hoon;Lee, Byung-Jin;Oh, Seung-Hee;Lee, Yong-Tea;Kim, Kyung-Seok
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.34-41
    • /
    • 2017
  • In this paper, the I/O parameters of existing predictive models were analyzed to construct a composite disaster prediction model that incorporates a previously developed natural disaster prediction model and a prediction of social disaster prediction models. A complex disaster prediction model indicates a combination of multiple disasters, not a single disaster. Such a complex disaster was mainly linked to a social disaster caused by natural disasters resulting from natural disasters, so it conducted a study of natural disasters and social disaster prediction models. Several estimates were analyzed based on several predictive models of prediction models, and the I/O parameters applied universally were derived by the types of disaster types. In this paper, It will help develop a study aimed at building a complex disaster prediction model.

Trends in Disaster Prediction Technology Development and Service Delivery (재난예측 기술 개발 및 서비스 제공 동향)

  • Park, Soyoung;Hong, Sanggi;Lee, Kangbok
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.1
    • /
    • pp.80-88
    • /
    • 2020
  • This paper describes the development trends and service provision examples of disaster occurrence and spread prediction technology for various disasters such as tsunamis, floods, and fires. In terms of fires, we introduce the WIFIRE system, which predicts the spread of large forest fires in the United States, and the Metro21: Smart Cities Institute project, which predicts the risk of building fires. This paper describes the development trends in tsunami prediction technology in the United States and Japan using artificial intelligence (AI) to predict the occurrence and size of tsunamis that cause great damage to coastal cities in Japan, Indonesia, and the United States. In addition, it introduces the NOAA big data platform built for natural disaster prediction, considering that the use of big data is very important for AI-based disaster prediction. In addition, Google's flood forecasting system, domestic and overseas earthquake early warning system development, and service delivery cases will be introduced.

PREDICTION OF TOKAI EARTHQUAKE DISASTER DAMAGE IN HAMAMATSU CITY AND THE COMPARISON TO THE PREDICTION REPORT OF SHIZUOKA PREFECTURE GOVERNMENT USING GIS

  • Iwasaki, Kazutaka;Komiyaka, Tsukasa
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.321-324
    • /
    • 2007
  • It is commonly believed that a gigantic earthquake (Tokai Earthquake) could occur in Shizuoka Prefecture in the near future. The Shizuoka Prefecture Government made the prediction report of Tokai Earthquake disaster damage. But this report does not pay attention to the ground conditions. The authors make a prediction map using GIS of Tokai Earthquake disaster damage in Asada-cho and Hirosawa Ni-chome in the central Hamamatsu City and revealed the location of dangerous houses and dangerous points in road networks in each town. These information could be useful when people try to find escape routes in an earthquake.

  • PDF

Dangerous Area Prediction Technique for Preventing Disaster based on Outside Sensor Network (실외 센서네트워크 기반 재해방지 시스템을 위한 위험지역 예측기법)

  • Jung, Young-Jin;Kim, Hak-Cheol;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.13D no.6 s.109
    • /
    • pp.775-788
    • /
    • 2006
  • Many disaster monitoring systems are constantly studied to prevent disasters such as environmental pollution, the breaking of a tunnel and a building, flooding, storm earthquake according to the progress of wireless telecommunication, the miniaturization of terminal devices, and the spread of sensor network. A disaster monitoring system can extract information of a remote place, process sensor data with rules to recognize disaster situation, and provide work for preventing disaster. However existing monitoring systems are not enough to predict and prevent disaster, because they can only process current sensor data through utilizing simple aggregation function and operators. In this paper, we design and implement a disaster prevention system to predict near future dangerous area through using outside sensor network and spatial Information. The provided prediction technique considers the change of spatial information over time with current sensor data, and indicates the place that could be dangerous in near future. The system can recognize which place would be dangerous and prepare the disaster prevention. Therefore, damage of disaster and cost of recovery would be reduced. The provided disaster prevention system and prediction technique could be applied to various disaster prevention systems and be utilized for preventing disaster and reducing damages.

APPLICATION OF 3D TERRAIN MODEL FOR INDUSTRY DISASTER ASSESSMENT

  • Kim, Hyung-Seok;Cho, Hyoung-Ki;Chang, Eun-Mi;Kim, In-Hyun;Kim, In-Won
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.3-5
    • /
    • 2008
  • An increase in oil and gas plants caused by development of process industry have brought into the increase in use of flammable and toxic materials in the complex process under high temperature and pressure. There is always possibility of fire and explosion of dangerous chemicals, which exist as raw materials, intermediates, and finished goods whether used or stored in the industrial plants. Since there is the need of efforts on disaster damage reduction or mitigation process, we have been conducting a research to relate explosion model on the background of real 3D terrain model. By predicting the extent of damage caused by recent disasters, we will be able to improve efficiency of recovery and, sure, to take preventive measure and emergency counterplan in response to unprepared disaster. For disaster damage prediction, it is general to conduct quantitative risk assessment, using engineering model for environmental description of the target area. There are different engineering models, according to type of disaster, to be used for industry disaster such as UVCE (Unconfined Vapour Cloud Explosion), BLEVE (Boiling Liquid Evaporation Vapour Explosion), Fireball and so on, among them, we estimate explosion damage through UVCE model which is used in the event of explosion of high frequency and severe damage. When flammable gas in a tank is released to the air, firing it brings about explosion, then we can assess the effect of explosion. As 3D terrain information data is utilized to predict and estimate the extent of damage for each human and material. 3D terrain data with synthetic environment (SEDRIS) gives us more accurate damage prediction for industrial disaster and this research will show appropriate prediction results.

  • PDF

Life Risk Assessment of Landslide Disaster Using Spatial Prediction Model (공간 예측 모델을 이용한 산사태 재해의 인명 위험평가)

  • Jang, Dong-Ho;Chung, C.F.
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.6
    • /
    • pp.373-383
    • /
    • 2006
  • The spatial mapping of risk is very useful data in planning for disaster preparedness. This research presents a methodology for making the landslide life risk map in the Boeun area which had considerable landslide damage following heavy rain in August, 1998. We have developed a three-stage procedure in spatial data analysis not only to estimate the probability of the occurrence of the natural hazardous events but also to evaluate the uncertainty of the estimators of that probability. The three-stage procedure consists of: (i)construction of a hazard prediction map of "future" hazardous events; (ii) validation of prediction results and estimation of the probability of occurrence for each predicted hazard level; and (iii) generation of risk maps with the introduction of human life factors representing assumed or established vulnerability levels by combining the prediction map in the first stage and the estimated probabilities in the second stage with human life data. The significance of the landslide susceptibility map was evaluated by computing a prediction rate curve. It is used that the Bayesian prediction model and the case study results (the landslide susceptibility map and prediction rate curve) can be prepared for prevention of future landslide life risk map. Data from the Bayesian model-based landslide susceptibility map and prediction ratio curves were used together with human rife data to draft future landslide life risk maps. Results reveal that individual pixels had low risks, but the total risk death toll was estimated at 3.14 people. In particular, the dangerous areas involving an estimated 1/100 people were shown to have the highest risk among all research-target areas. Three people were killed in this area when landslides occurred in 1998. Thus, this risk map can deliver factual damage situation prediction to policy decision-makers, and subsequently can be used as useful data in preventing disasters. In particular, drafting of maps on landslide risk in various steps will enable one to forecast the occurrence of disasters.

Development of an Integrated Forecasting and Warning System for Abrupt Natural Disaster using rainfall prediction data and Ubiquitous Sensor Network(USN) (농촌지역 돌발재해 피해 경감을 위한 USN기반 통합예경보시스템 (ANSIM)의 개발)

  • Bae, Seung-Jong;Bae, Won-Gil;Bae, Yeon-Joung;Kim, Seong-Pil;Kim, Soo-Jin;Seo, Il-Hwan;Seo, Seung-Won
    • Journal of Korean Society of Rural Planning
    • /
    • v.21 no.3
    • /
    • pp.171-179
    • /
    • 2015
  • The objectives of this research have been focussed on 1) developing prediction techniques for the flash flood and landslide based on rainfall prediction data in agricultural area and 2) developing an integrated forecasting system for the abrupt disasters using USN based real-time disaster sensing techniques. This study contains following steps to achieve the objective; 1) selecting rainfall prediction data, 2) constructing prediction techniques for flash flood and landslide, 3) developing USN and communication network protocol for detecting the abrupt disaster suitable for rural area, & 4) developing mobile application and SMS based early warning service system for local resident and tourist. Local prediction model (LDAPS, UM1.5km) supported by Korean meteorological administration was used for the rainfall prediction by considering spatial and temporal resolution. NRCS TR-20 and infinite slope stability analysis model were used to predict flash flood and landslide. There are limitations in terms of communication distance and cost using Zigbee and CDMA which have been used for existing disaster sensors. Rural suitable sensor-network module for water level and tilting gauge and gateway based on proprietary RF network were developed by consideration of low-cost, low-power, and long-distance for communication suitable for rural condition. SMS & mobile application forecasting & alarming system for local resident and tourist was set up for minimizing damage on the critical regions for abrupt disaster. The developed H/W & S/W for integrated abrupt disaster forecasting & alarming system was verified by field application.

A Basic Study on Reginal Prediction Model for Building Damage Costs acrroding to Hurricane (태풍에 따른 지역별 건물피해액 예측모델 개발 기초연구)

  • Kim, Boo-Young;Yang, Seongpil;Kim, Sang ho;Cho, Han Byung;Son, Kiyoung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.253-254
    • /
    • 2015
  • Currently, according to the climate change, the damages due to the hurricane is more increased than before. In this respect, several countries have been conducted the studies regarding the damage prediction model of buildings to minimize the damages from natural disaster. As hurricane is the complex disaster including a strong wind and heavy rain, to predict the damage of hurricane, various factors has to be considered. However, mostly research has been conducted to consider only hurricane properties. Therefore, the objective of this study is to develop the regression model for predicting damages of buildings considering geography, socio-economy, construction environment and hurricane information. In the future, this study can be utilized to developing damage prediction model for building from hurricane in South Korea.

  • PDF