• Title/Summary/Keyword: disaster issue detection

Search Result 12, Processing Time 0.018 seconds

KOMPSAT Imagery Application Status (다목적실용위성 영상자료 활용 현황)

  • Lee, Kwangjae;Kim, Younsoo;Chae, Taebyeong
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1311-1317
    • /
    • 2018
  • The ultimate goal of satellite development is to use information obtained from satellites. Therefore, national-levelsatellite development program should include not only hardware development, but also infrastructure establishment and application technology development for information utilization. Until now, Korea has developed various satellites and has been very useful in weather and maritime surveillance as well as various disasters. In particular, KOMPSAT (Korea Multi-purpose Satellite) images have been used extensively in agriculture, forestry and marine fields based on high spatial resolution, and has been widely used in research related to precision mapping and change detection. This special issue aims to introduce a variety of recent studies conducted using KOMPSAT optical and SAR (Synthetic Aperture Radar) images and to disseminate related satellite image application technologies to the public sector.

Estimation of fruit number of apple tree based on YOLOv5 and regression model (YOLOv5 및 다항 회귀 모델을 활용한 사과나무의 착과량 예측 방법)

  • Hee-Jin Gwak;Yunju Jeong;Ik-Jo Chun;Cheol-Hee Lee
    • Journal of IKEEE
    • /
    • v.28 no.2
    • /
    • pp.150-157
    • /
    • 2024
  • In this paper, we propose a novel algorithm for predicting the number of apples on an apple tree using a deep learning-based object detection model and a polynomial regression model. Measuring the number of apples on an apple tree can be used to predict apple yield and to assess losses for determining agricultural disaster insurance payouts. To measure apple fruit load, we photographed the front and back sides of apple trees. We manually labeled the apples in the captured images to construct a dataset, which was then used to train a one-stage object detection CNN model. However, when apples on an apple tree are obscured by leaves, branches, or other parts of the tree, they may not be captured in images. Consequently, it becomes difficult for image recognition-based deep learning models to detect or infer the presence of these apples. To address this issue, we propose a two-stage inference process. In the first stage, we utilize an image-based deep learning model to count the number of apples in photos taken from both sides of the apple tree. In the second stage, we conduct a polynomial regression analysis, using the total apple count from the deep learning model as the independent variable, and the actual number of apples manually counted during an on-site visit to the orchard as the dependent variable. The performance evaluation of the two-stage inference system proposed in this paper showed an average accuracy of 90.98% in counting the number of apples on each apple tree. Therefore, the proposed method can significantly reduce the time and cost associated with manually counting apples. Furthermore, this approach has the potential to be widely adopted as a new foundational technology for fruit load estimation in related fields using deep learning.