• Title/Summary/Keyword: directional noise

Search Result 294, Processing Time 0.023 seconds

A Study on the Performance Improvement of Over-sampled Discrete Wavelet Transform (과표본화된 이산 웨이브렛 변환의 성능 향상에 관한 연구)

  • Jee, Innho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.77-83
    • /
    • 2014
  • Over-sampled discrete wavelet transformation is one way to overcome the disadvantages of the standard wavelet transform of shift invariance even though it increases the number of subband signals. Non-separable based discrete wavelet transform is efficient that it satisfies shift invariance and directional selectivity. In this paper, since efficient over-sampled wavelet transform is possible in a two-dimensional image processing, we show that the proposed method is well applied with performance improvement of digital image and noise removal.

Performance Analysis of DCMP and ZF based on Spatial Channel Response Estimation by ESPRIT (ESPRIT에 의한 공간 채널응답 추정치에 기초를 둔 방향구속 전력 최소화법과 제로포싱 알고리즘의 성능평가)

  • 정중식;임정빈;안영섭
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.11a
    • /
    • pp.169-174
    • /
    • 2002
  • It has known that the DCMP(Directionally Constrained Minimization of power)and the ZF(Zero Forcing) can improve the SINR performance of an array antenna system by using spatial signature of wireless channel. This paper analyzes performance of DCMP and ZF in multiple scattering environments. To obtain the spatial signature of wireless channel. bothe DOA(Directional of Arrival) and AS(Angular Spread) of the received signals were estimated by using ESPRIT. The performance of the DCMP and the ZF was analyzed theoretically. Through computer simulation, the SINR performance were evaluated.

  • PDF

Use of Hearing Aids in Unilateral Cochlear Implantee (편측 인공와우 이식자의 보청기 사용)

  • Heo, Seung-Deok;Kim, Lee-Suk;Jung, Dong-Keun;Choi, Ah-Hyun;Ko, Do-Heung;Kim, Hyun-Gi
    • Speech Sciences
    • /
    • v.12 no.4
    • /
    • pp.197-202
    • /
    • 2005
  • The cochlear implantation(CI) as an useful tool for aural rehabilitation in bilateral severe to profound hearing impairment. However, CI prefer to usually one ear in spite of bilateral hearing impaired. because of the various characteristics of hearing loss, the hearing conservation for the future possibility, and socioeconomic condition of hearing impaired person and their families. The unilateral CI has limitations such as a directional loss, a difficult speech understanding in noise and a neural plasticity. These limitations will be overcome by hearing aid(HA) which is familiar with hearing impairer. but HA fitting for bimodal-binaural hearing are difficult because the difference output characteristic of HA and CI. This study will be confirm realities of use of HA in unilateral cochlear implantee. For this goal, 25(m:f=10:15) child participated who are used to HA for 1 to 17 months. We had telephone interviews with their mother about use of HA, change of auditory performance and own voice. As the results, hearing threshold levels of unimplanted ear, the use of a appropriate HA, implanted and aided hearing threshold level(HTL) are must be considered for successful biomodal-binaural hearing. Especially, implanted and aided HTL should be very useful parameter for a prediction of HA effect and a criterion of selection for bilateral cochlear implantation.

  • PDF

Lane Detection Based on a Cumulative Distribution function of Edge Direction (에지 방향의 누적분포함수에 기반한 차선인식)

  • Yi, Un-Kun;Baek, Kwang-Ryul;Lee, Joon-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2814-2818
    • /
    • 2000
  • This paper describes an image processing algorithm capable of recognizing the road lane using a CDF (Cumulative Distribution Function). which is designed for the model function of the road lane. The CDF has distinctive peak points at the vicinity of the lane direction because of the directional and positional continuities of the lane. We construct a scatter diagram by collecting the edge pixels with the direction corresponding to the peak point of the CDF and carry out the principal axis-based line fitting for the scatter diagram to obtain the lane information. As noises play the role of making a lot of similar features to the lane appear and disappear in the image we introduce a recursive estimator of the function to reduce the noise effect and a scene understanding index (SUI) formulated by statistical parameters of the CDF to prevent a false alarm or miss detection. The proposed algorithm has been implemented in a real time on the video data obtained from a test vehicle driven in a typical highway.

  • PDF

Road-Lane Detection Based on a Cumulative Distribution Function of Edge Direction

  • Yi, Un-Kun;Lee, Joon-Woong;Baek, Kwang-Ryul
    • Journal of KIEE
    • /
    • v.11 no.1
    • /
    • pp.69-77
    • /
    • 2001
  • This paper describes an image processing algorithm capable of recognizing road lanes by using a CDF(cumulative distribution function). The CDF is designed for the model function of road lanes. Based on the assumptions that there are no abrupt changes in the direction and location of road lanes and that the intensity of lane boundaries differs from that of the background, we formulated the CDF, which accumulates the edge magnitude for edge directions. The CDF has distinctive peak points at the vicinity of lane directions due to the directional and the positional continuities of a lane. To obtain lane-related information a scatter diagram was constructed by collecting edge pixels, of which the direction corresponds to the peak point of the CDF, then the principal axis-based line fitting was performed for the scatter diagram. Noises can cause many similar features to appear and to disappear in an image. Therefore, to reduce the noise effect a recursive estimator of the CDF was introduced, and also to prevent false alarms or miss detection a scene understanding index (DUI) was formulated by the statistical parameters of the CDF. The proposed algorithm has been implemented in real time on video data obtained from a test vehicle driven on a typical highway.

  • PDF

Edge Pattern Classification Method for Efficient Line Detection (효율적인 직선 검출을 위한 에지 패턴 분류 방법)

  • Park, Sang-Hyun;Kim, Jong-Ho;Kang, Eui-Sung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.918-920
    • /
    • 2011
  • In this paper, a simple edge pattern classification method is proposed for detecting straight line segments in an image corrupted by impulse noise. Corrupted images have complicated edge patterns. To detect straight line from an complicated edge pattern, it is needed to simplify the entire edge. The proposed algorithm separates the entire edge into 4 directional partial edge patterns. Each line segment is separated from the partial edge image where several line segments are overlapped, and then the straight line is detected. The results of the experiments emphasize that the proposed algorithm is simple but accurate.

  • PDF

Remote Sensing Application for the Mineralized Zone Using Landsat TM Data (LANSAT TM자료에 의한 광화대조사 응용기법개발)

  • 姜必鍾;智光薰;曺民肇;崔映燮;Choi, Young Sup
    • Korean Journal of Remote Sensing
    • /
    • v.2 no.2
    • /
    • pp.79-94
    • /
    • 1986
  • TM data, which have better resolution in spatial and spectral than MSS data, were used for this study, and several Image Processing Techniques (IPT) were examined for finding the best IPT to fit to lineament extraction and mineralized zone mapping. The Ryeongnam area was selected as test area, because the area is one of major mineralized zones in Korea and its hydrothermal alteration zone is wider and deeper than other areas. The spatial filtering method is most optimum one for limeament extraction: that is, the directional spatial filtering is most efficient to detect N-S, E-W direction lineaments on the image, and the high boost filtering can be applied for mapping all direction lineaments. The ratio method was selected for detecting altered zone. It is possible to make several tens combinations in ratio with 7 bands of TM data, but considering spectral characteristics of each band of TM to the geological meterials and vegetation, the band 4/band 3(A), band 5/band 7(B), and B/A ratio methods were chosen among them. The 5/7 ratio image did not show clearly the altered area due to noise from vegetation cover, so the 4/3 ratio imae was used for trying to decrease the effect of vegetation. As a result the B/A ratio image showed quite nicely the altered zone of the test area. In conclusion, the spatial filtering is the best image processing techniques for lineament mapping, and the B/A ratio image in TM data is useful for the mineralized zone mapping.

Compositional data analysis by the square-root transformation: Application to NBA USG% data

  • Jeseok Lee;Byungwon Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.3
    • /
    • pp.349-363
    • /
    • 2024
  • Compositional data refers to data where the sum of the values of the components is a constant, hence the sample space is defined as a simplex making it impossible to apply statistical methods developed in the usual Euclidean vector space. A natural approach to overcome this restriction is to consider an appropriate transformation which moves the sample space onto the Euclidean space, and log-ratio typed transformations, such as the additive log-ratio (ALR), the centered log-ratio (CLR) and the isometric log-ratio (ILR) transformations, have been mostly conducted. However, in scenarios with sparsity, where certain components take on exact zero values, these log-ratio type transformations may not be effective. In this work, we mainly suggest an alternative transformation, that is the square-root transformation which moves the original sample space onto the directional space. We compare the square-root transformation with the log-ratio typed transformation by the simulation study and the real data example. In the real data example, we applied both types of transformations to the USG% data obtained from NBA, and used a density based clustering method, DBSCAN (density-based spatial clustering of applications with noise), to show the result.

Velocity Distribution Measurements in Mach 2.0 Supersonic Nozzle using Two-Color PIV Method (Two Color PIV 기법을 이용한 마하 2.0 초음속 노즐의 속도분포 측정)

  • 안규복;임성규;윤영빈
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.18-25
    • /
    • 2000
  • A two-color particle image velocimetry (PIV) has been developed for measuring two dimensional velocity flowfields and applied to a Mach 2.0 supersonic nozzle. This technique is similar to a single-color PIV technique except that two different color laser beams are used to solve the directional ambiguity problem. A green-color laser sheet (532 nm: 2nd harmonic beam of YAG laser) and a red-color laser sheet (619 nm: output beam from YAG pumped Dye laser using Rhodamine 640) are employed to illuminate the seeded particles. A high resolution (3060${\times}$2036) digital color CCD camera is used to record the particle positions. This system eliminates the photographic-film processing time and subsequent digitization time as well as the complexities associated with conventional image shifting techniques for solving directional ambiguity problem. The two-color PIV also has the advantage that velocity distributions in high speed flowfields can be measured simply and accurately by varying the time interval between two different laser beams due to its high signal-to-noise ratio and thereby less requirement of panicle pair numbers for a velocity vector in one interrogation spot. The velocity distribution in the Mach 2.0 supersonic nozzle has been measured and the over-expanded shock cell structure can be predicted by the strain rate field. These results are compared and analyzed with the schlieren photograph for the velocity distributions and shock location.

  • PDF

Study on Compensation Method of Anisotropic H-field Antenna (Loran H-field 안테나의 지향성 보상 기법 연구)

  • Park, Sul-Gee;Son, Pyo-Woong
    • Journal of Navigation and Port Research
    • /
    • v.43 no.3
    • /
    • pp.172-178
    • /
    • 2019
  • Although the needs for providing resilient PNT information are increasing, threats due to the intentional RFI or space weather change are challenging to resolve. eLoran, which is a terrestrial navigation system that use a high-power signal is considered as a best back-up navigation system. Depending on the user's environment in the eLoran system, the user may use one of E-field or H-field antennas. H-field antenna, which has no restriction on setting stable ground and is relatively resistant to noise of general electronic equipment, is composed of two loops, and shows anisotropic gain pattern due to the different measurement at the two loops. Therefore, the H-field antenna's phase estimation value of signal varies depending on its direction even at the static environment. The error due to the direction of the signal should be eliminated if the user want to estimate the own position more precisely. In this paper, a method to compensate the error according to the geometric distribution between the H-field antenna and the transmitting station is proposed. A model was developed to compensate the directional error of H-field antenna based on the signal generated from the eLoran signal simulator. The model is then used to the survey measurement performed in the land area and verify its performance.