• Title/Summary/Keyword: directional coupling

Search Result 165, Processing Time 0.024 seconds

Optical Power Transfer of Grating-Assisted Directional Coupler with Three-Guiding Channels: TM modes Case

  • Ho, Kwang-Chun
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.126-130
    • /
    • 2003
  • The optical power transfer of TM modes in grating-assisted directional couplers (GADCs) with three-guiding channels is rigorously evaluated by defining a novel coupling efficiency amenable to the rigorous analytical solutions of modal transmission-line theory (MTLT). The results reveal that the incident power is sensitively partitioned through three output channels in terms of such grating parameters as the period, the duty cycle, and wavelength.

  • PDF

A Study on the Characteristics of Directional Coupler by BPM (BPM에 의한 방향성 결합기의 특성 연구)

  • 장지호;최태일;최병하
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.7
    • /
    • pp.951-958
    • /
    • 1993
  • The coupling length is very important factor for the study of directional coupler and other intergrated-optic devices. And the calculation of coupling length is the fundamental process of studing various types of intergrated optical devices. But the calculation of coupling length, requires coupling coefficient n. and the evaluation of coupling coefficient f is very tedious because it requires the calculation of overlap intergral of the two modes. Because of above reason, we suggest the use of beam propagation method, We suggest the basic configuration of directional coupler, which has three different types of longitudinal to vertical ratio, and calculate the coupling length of sugested configuration by both coupled mode thery and beam propagation method and compare the results of each method.

  • PDF

Design rules of directional coupler optical switches in consideration of parasitic couplings in the input/output bending sections (Input/Output bending 영역에서의 parasitic coupling을 고려한 방향성 결합기 광 스위치의 설계 법칙)

  • 김동각;김창민
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.1
    • /
    • pp.41-48
    • /
    • 1997
  • Design rules of directional coupler optical switches are discussed in consideration of parasitic couplings in the bending section. The parasitic coupling phenomenon is analyzed based on the coupled-mode theory and the solutions are represented in the form of the transfer matrix. The modified switching conditions due to the parasitic coupling are derived and the resultant switching diagrams are illustrated. It is revealed that the parallel section's length needs to be adjustd less than the coupling length $l_c(=\pi/2\textsc{k}o)$ to obtain the desired crosstalk and that the adjustment depends on the strength of the parasitic coupling. However, it is discovered that, for weak parasitic coupling, the switching voltage does not need to be altered but may maintain the same value as if no parasitic coupling is taken into account.

  • PDF

Low-loss Electrically Controllable Vertical Directional Couplers

  • Tran, Thang Q.;Kim, Sangin
    • Current Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.65-72
    • /
    • 2017
  • We propose a nearly lossless, compact, electrically modulated vertical directional coupler, which is based on the controllable evanescent coupling in a previously proposed graphene-assisted total internal reflection (GA-FTIR) scheme. In the proposed device, two single-mode waveguides are separate by graphene-$SiO_2$-graphene layers. By changing the chemical potential of the graphene layers with a gate voltage, the coupling strength between the waveguides, and hence the coupling length of the directional coupler, is controlled. Therefore, for a properly chosen, fixed device length, when an input wave is launched into one of the waveguides, the ratio of their output powers can be controlled electrically. The operation of the proposed device is analyzed, with the dispersion relations calculated using a model of a one-dimensional slab waveguide. The supermodes in the coupled waveguide are calculated using the finite-element method to estimate the coupling length, realistic devices are designed, and their performance was confirmed using the finite-difference time-domain method. The designed $3{\mu}m$ by $1{\mu}m$ device achieves an insertion loss of less than 0.11 dB, and a 24-dB extinction ratio between bar and cross states. The proposed low-loss device could enable integrated modulation of a strong optical signal, without thermal buildup.

Y-branch Directional Coupler type Ti: LiNbO3 Optical Switch/Modulator

  • Kim, Chang-Min
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1990.02a
    • /
    • pp.219-221
    • /
    • 1990
  • Y-branch directional coupler type optical modulators with three different coupling lengths were fabricated on z-cut LiNbO3 and tested at λ-1.3${\mu}{\textrm}{m}$. One device gad an exact coupling length for complete power transfer and two other devices had coupling lengths. It was confirmed that, for dc operation, experimental results agreed well with theoretical results.

  • PDF

Measurement and Analysis of Loss in Optical Directional Couplers

  • Leepila, R.;Jangsilp, R.;Noppanakeepong, S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.484-487
    • /
    • 2004
  • Symmetric directional couplers are widely used in interferometers, switches, and various signal processing devices. Recently, several optical couplers using multimode fibers were reported, but these suffer from inefficient coupling of light into a branching fiber and/or low directivity. This paper presents the measurement and analysis of loss in the connection of optical fibers via the optical directional couplers. The functionality of the device is based on the principle that is symmetrical, the power in excited mode can be unambiguously directed into one of the output channel by varying and of its parameters. In this experiment, we measure the power of loss in the optical directional coupler at various radius of curvature. Before the measurement of loss in x-coupler, we polish the contact of the fiber surface in order that light can penetrate through another port. The results show that, when the radius of curvature is increased, the loss power is decreased and also approaches of the straight line case.

  • PDF

A Study on the Design of Directional Coupler with high Directivity (높은 지향성을 갖는 방향성 결합기 설계에 관한 연구)

  • 지일구;정정화
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11A
    • /
    • pp.921-928
    • /
    • 2003
  • This paper propose a new design of directional couplers with the high directivity. The directional coupler is used to check and verify the power, frequency and antenna reflection of a signal at transmission station for the mobile communications. The performance index of the directional coupler is to which the coupling is strong to reduce the effect on the transmitted power and the directivity is high to suppress the interference of the reflected signals and reduce the nor in the communication. Then, the architectures to gain the high directivity and the studies to get the strong coupling have been proposed However, the conventional architectures lot the high directivity and strong coupling have the directivity by about 20㏈ and the difficulty to achieve the higher directivity than 40㏈ suitable for IMT-2000 [1]. This paper proposes an architecture of the directional coupler which is based on the grounding composed of the strip lines and the comparison results with the conventional directional couplers. The comparison results show that the proposed directional coupler has the directivity more than 40 ㏈ and is adequate for the 2.05GHz IMT-2000

2.4-GHz Power Amplifier with Power Detector Using Metamaterial-Based Transformer-Type On-Chip Directional Coupler

  • Dang, Trung-Sinh;Tran, Anh-Dung;Lee, Bomson;Yoon, Sang-Woong
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.554-557
    • /
    • 2013
  • This letter presents a power amplifier (PA) with an on-chip power detector for 2.4-GHz wireless local area network application. The power detector consists of a clamp circuit, a diode detector, and a coupled line directional coupler. A series inductor for an output matching network in the PA is combined with a through line of the coupler, which reduces the coupling level. Therefore, the coupler employs a metamaterial-based transformer configuration to increase coupling. The amount of coupling is increased by 2.5 dB in the 1:1 symmetric transformer structure and by 4.5 dB from two metamaterial units along the coupled line.

Characterization of directional coupling optical switch at High frequency (고주파에서 방향성결합형 광 스위치의 출력 특성변화)

  • 강기성;소대화
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.264-268
    • /
    • 1996
  • Directional coupling optical switch which on the LiNbO$_3$ substrate is fabricated by using proton exchange method and self-aligned method. Proton exchange of proton diffusion method was applied to pattern a waveguide on LiNbO$_3$ substrate. The annealing at 400[$^{\circ}C$] was caroled out to control waveguide width and depth. The process of proton exchange was done at 150[$^{\circ}C$] for 120[min], 200[$^{\circ}C$] for 60[min] and annealing process was done at 400[$^{\circ}C$] for 90[min], 400[$^{\circ}C$] for 60[min]. The high speed directional coupling optical switch has very good figures of merits:the measured high frequency power were achieved.

  • PDF

Design of optical directional couplers using Nano-Scale MQWs (나노 양자우물구조를 이용한 광통신용 방향성 결합기의 설계)

  • Ho, Kwang-Chun
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.2
    • /
    • pp.162-167
    • /
    • 2005
  • An optical directional coupler, which consists of quantum wells with nanothickness, is designed by using Modal Transmission Line Theory (MTLT). To demonstrate the validity and usefulness, the propagation characteristics and the coupling efficiencies are rigorously evaluated at nanoscale couplers, which consist of double quantum wells with different effective masses. The numerical result reveals that the coupling efficiency of nanoscale couplers is maximized at a coupling length 2052.3 nm, if the total electron energy is 83.9 meV. Furthermore, the coupler operates as a filter with narrower band as the barrier thickness increases.