• 제목/요약/키워드: direction of impact

검색결과 1,175건 처리시간 0.027초

충결하중의 방향에 따른 정전집진기 집진판의 진동 특성 연구 (A Study on the Vibration Characteristics by the Change of Impact Load Direction in the Collecting Plates of Electrostatic Precipitator)

  • 나종문;이기백;양장식
    • 소음진동
    • /
    • 제5권2호
    • /
    • pp.247-256
    • /
    • 1995
  • In this paper, double exposure holographic interferometry using ruby pulse laser is formed in order to investigate the propagation of transient waves. The vibration characteristics according to the change of impact load direction, i.e., impacted in the shear direction and in the normal direction are analyzed. It was observed that the macroscopic trends of transient wave generation and propagation in the assembly of precipitator plates were almost similar regardless of the change of impact load direction. But the propagation and mixing of transient wave was advanced relatively slowly when impacted in the normal direction.

  • PDF

Dynamics of an elastic beam and a jumping oscillator moving in the longitudinal direction of the beam

  • Baeza, Luis;Ouyang, Huajiang
    • Structural Engineering and Mechanics
    • /
    • 제30권3호
    • /
    • pp.369-382
    • /
    • 2008
  • An oscillator of two lumped masses linked through a vertical spring moves forward in the horizontal direction, initially at a certain height, over a horizontal Euler beam and descends on it due to its own weight. Vibration of the beam and the oscillator is excited at the onset of the ensuing impact. The impact produced by the descending oscillator is assumed to be either perfectly elastic or perfectly plastic. If the impact is perfectly elastic, the oscillator bounces off and hits the beam a number of times as it moves forward in the longitudinal direction of the beam, exchanging its dynamics with that of the beam. If the impact is perfectly plastic, the oscillator (initially) sticks to the beam after its first impact and then may separate and reattach to the beam as it moves along the beam. Further events of separation and reattachment may follow. This interesting and seemingly simple dynamic problem actually displays rather complicated dynamic behaviour and has never been studied in the past. It is found through simulated numerical examples that multiple events of separation and impact can take place for both perfectly elastic impact and perfectly plastic impact (though more of these in the case of perfectly elastic impact) and the dynamic response of the oscillator and the beam looks noisy when there is an event of impact because impact excites higher-frequency components. For the perfectly plastic impact, the oscillator can experience multiple events of consecutive separation from the beam and subsequent reattachment to it.

HR Coil재 Box형 용접구조물의 피로강도평가에 관한 연구 (Fatigue Strength Evaluation of Welded Box Type with HR Coil)

  • 강성원;김명현;장용원;이진우
    • Journal of Welding and Joining
    • /
    • 제23권5호
    • /
    • pp.20-24
    • /
    • 2005
  • Due to the difficulties associated with the supply of steel plates, hot rolled coil (Steel grade: SM490A) is considered fur structural materials in replace of the existing SWS50A-M1. However, it is found that SM490A exhibits a significant anisotropy in terms of impact energy with respect to transverse and longitudinal directions. In this study, an experimental investigation is carried out to examine the relationship between the anisotropy in impact values and the fatigue strengths of SM490A with respect to the rolling direction of test specimens. All test specimens failed around 1,500,000 cycles regardless of the test specimen direction. Therefore, it is found that the anisotropy in impact energy is not related to the fatigue strength of the materials considered in this study. However, the transverse direction specimen showed more rapid brittle fracture mode compared to that of longitudinal direction specimen, and this appears to be related to the lower impact values in transverse direction.

초고층건물 탁월풍 방향의 바람 특성에 관한 연구 (A Study on the Wind Characteristics of Skyscraper Prevailing Wind Direction)

  • 김재철;이규석
    • 환경영향평가
    • /
    • 제16권6호
    • /
    • pp.503-510
    • /
    • 2007
  • Since 1990s many skyscrapers have been built in Seoul. However, gusty winds occur among tall buildings by descending turbulences due to the upper air blocking. This study aims to investigate the wind characteristics of skyscraper prevailing wind direction. In order to evaluate the building wind in this area, The wind speed and the wind direction were measured using propeller type RM-Young wind monitor in this study. The maximum wind speed was recorded by 15.1 m/sec and the main wind direction is WNW and NW. The ultimate purpose of this study is to figure out the phenomena of building wind impact and also to provide essential basic data for establishing proper guidelines in building wind impact assessment for skyscrapers in Korea.

골프 드라이버 스윙 시 임팩트 전·후 신체 균형성이 클럽헤드의 속도와 각도에 미치는 영향 (Effect of Balance before and after Impact on the Velocity and Angle of Golf Club during Driver Swing)

  • 류지선;김태삼
    • 한국운동역학회지
    • /
    • 제21권4호
    • /
    • pp.411-420
    • /
    • 2011
  • The purpose of this investigation was to determine whether correlations exist between balance and impact velocity, angular position, and maximum velocity of a club during drive swing. Twelve skilled golfers were recruited in this study. They were asked to perform ten swing trials and two trials were selected for analysis. Balance parameters were calculated via the force platform while kinematic variables were determined by using the Qualisys system. The results of the present study demonstrated that the average of COP velocity was faster in the medio-lateral direction rather than the anterio-posterior direction. Also, left foot's COP velocity and free torque were greater than the right foot's before impact. The range of the right foot's COP in the anterio-posterior direction before impact were correlated with the club velocity and angular position at impact. There was a negative correlation between the left foot's COP velocity before the impact and the velocity at impact. Additionally, the range and RMS of the left foot's free torque affected on the club angular position at impact and the maximum velocity at release, respectively. Finally, a negative correlation existed between the range of the right foot's free torque after the impact and club's maximum velocity at release.

우리나라 환경영향평가제도의 현주소와 발전방향에 관한 연구 (The Status Quo and Direction of Development of Environmental Impact Assessment System in Korea)

  • 최준규
    • 환경영향평가
    • /
    • 제9권2호
    • /
    • pp.155-161
    • /
    • 2000
  • Environmental impact assessment(EIA), the only preventive system to manage development projects destroying the nature and ecosystem systematically, has been accomplished since the late 1970. EIA connotes intrinsic limits predicting uncertain future with the aid of present data. Furthermore, EIA has been used as not decision-making tools but regulatory means. Therefore, EIA has been criticized severely. In order to present direction of development of EIA, we analyzed problems of management of EIA, and concluded measures as follows are needed. 1. Control of investigation of environmental impact statements 2. Development of evaluating methods and publication 3. Fostering of institute for research and investigation of EIA 4. Construction of harmony of environment and development 5. Upgrade of state of proxy executing EIA.

  • PDF

속도 제한에 의한 충격량 도형에 관한 연구 (An analysis on the robotic impact geometry with task velocity constraint)

  • 이지홍
    • 제어로봇시스템학회논문지
    • /
    • 제5권8호
    • /
    • pp.955-960
    • /
    • 1999
  • This paper describes the effect of impact configurations on a single robot manipulator. The effect of different configurations of kinematically redundant arms on impact forces at their end effectors during contact with the environment is investigated. Instead of the well-known impact ellipsoid, I propose an analytic method on the geometric configuration of the impact directly from the mathematical definition. By calculating the length along the specified motion direction and volume of the geometry, we can determine the characteristics of robot configurations in terms of both the impact along the specified direction and the ability of the robot withstanding the impact. Simulations of various impact configurations are discussed at the end of this paper.

  • PDF

곡률을 가진 적층복합재 구조에서의 저속충격손상 평가 (Damage Assessment of Curved Composite Laminate Structures Subjected to Low-Velocity Impact)

  • 전정규;권오양
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.69-73
    • /
    • 2001
  • Damage induced by low-velocity impact on the curved composite laminates was experimentally evaluated for CFRP cylindrical shells with the radius of curvatures of 50, 150, 300, and 500 mm. The result was then compared with that of flat laminates. The radius of curvatures and the effective shell stiffness appeared to considerably affect the dynamic impact response of curved shells. Under the same impact energy level, the maximum contact force increased with the decreasing radius of curvatures, with reaching 1.5 times that for plates at the radius of curvature of 50 mm. Since the maximum contact force is directly related to the impact damage, curved laminates can be more susceptible to delamination and less resistant to the low-velocity impact damage. The distribution of delamination along the thickness direction of curved laminates are also different from that of flat plates. Delamination was distributed rather even]y at each interface along the thickness direction of curved laminates. This implies that the effect of curvatures has to be considered for the design of a curved composite laminate.

  • PDF

IMU 원신호 기반의 기계학습을 통한 충격전 낙상방향 분류 (Classification of Fall Direction Before Impact Using Machine Learning Based on IMU Raw Signals)

  • 이현빈;이창준;이정근
    • 센서학회지
    • /
    • 제31권2호
    • /
    • pp.96-101
    • /
    • 2022
  • As the elderly population gradually increases, the risk of fatal fall accidents among the elderly is increasing. One way to cope with a fall accident is to determine the fall direction before impact using a wearable inertial measurement unit (IMU). In this context, a previous study proposed a method of classifying fall directions using a support vector machine with sensor velocity, acceleration, and tilt angle as input parameters. However, in this method, the IMU signals are processed through several processes, including a Kalman filter and the integration of acceleration, which involves a large amount of computation and error factors. Therefore, this paper proposes a machine learning-based method that classifies the fall direction before impact using IMU raw signals rather than processed data. In this study, we investigated the effects of the following two factors on the classification performance: (1) the usage of processed/raw signals and (2) the selection of machine learning techniques. First, as a result of comparing the processed/raw signals, the difference in sensitivities between the two methods was within 5%, indicating an equivalent level of classification performance. Second, as a result of comparing six machine learning techniques, K-nearest neighbor and naive Bayes exhibited excellent performance with a sensitivity of 86.0% and 84.1%, respectively.

철근 콘크리트 라멘조 보 배근과 스트럽을 적용한 공동주택 벽식 구조의 슬래브 바닥충격음 저감 방안 (A Study of the Reduction of the Floor Impact Sound by Applying RC structural frames (Girders and Stirrups) to the Wall Structures of Apartment Buildings)

  • 신기준;이경륜
    • 한국건설관리학회논문집
    • /
    • 제23권2호
    • /
    • pp.95-101
    • /
    • 2022
  • 본 연구는, 현재 대형 건설사에서 많이 채택하고 있는 벽식 구조에, 층간소음 효과가 우수한 라멘조 보를 직접 적용하여, 구조적 개선을 통한 효과적인 바닥충격음 저감 방안을 제시하고자 한다. 이를 위하여, 본 현장에서는 보 배근 방향의 변화와 스트럽 시공 유무를 통한 2가지의 구조적인 변화를 통하여, 가장 바닥충격음 저감에 효과적인 구조를 확인하고자 하였다. 현장 시험에 적용된 구조 개선은 총 6가지이며 ((1) 장변방향 보 배근, (2) 단변방향 보 배근, (3) 대각방향 보 배근, (4) 장변방향 보 배근과 스트럽 시공, (5) 단변방향 보 배근 및 스크럽 시공, (6)대각방향 보 배근 및 스트럽 시공), 이 슬래브들은 1차 테스트 (골조상태에서의 층간소음 측정)을 통하여, 가장 층간소음 저감 효과가 있는 보 배근 방향을 확인하였다. 현장 시험 결과, 가로방향의 보 배근과 스트럽 시공한 슬래브가 가장 층간소음 저감 효과가 뛰어난 것으로 나타났다. 이 슬래브가 일반 시공된 슬래브와 어떤 차이가 있는지 확인하기 위하여, 2차 테스트 (마감상태의 층간소음 측정)가 같은 층의 대조군과 비교함으로써 실행되었다. 이 결과, 최소1dB에서 최대 5dB정도로 현저하게 차이나는 것으로 나타났다. 결론적으로, 벽식구조에 라멘조 보와 스트럽을 적용한 구조는 단변방향 보다는 장변방향으로 배근하는 것이 효과가 훨씬 있는 것으로 나타났으며, 스트럽이 없는 보배근 보다는 스트럽이 있는 구조가 층간소음 저감에 효과가 있다고 여겨짐으로, 공동주택 벽식구조에 이러한 부분적인 구조 개선 적용이 가능하다고 본다.