• Title/Summary/Keyword: direction factor

Search Result 1,702, Processing Time 0.03 seconds

Fatigue Characteristics and FEM Analysis of 18Ni(200) Maraging Steel (18Ni 마르에이징강의 피로특성 및 유한요소해석)

  • 장경천;국중민;최병희;정재강;최병기
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.136-142
    • /
    • 2004
  • Effects of Nb(Niobium) contents and solution annealing on the strength and fatigue lift of 18%Ni maraging steel commonly using in aircraft, space field, nuclear energy, and vehicle etc. were investigated. Also the fatigue life stress intensity factor were compared experiment result and FEA(finite element analysis) result. The more Nb content, the higher or the lower fatigue lift on base metal specimens or solution annealed specimens showing that the fatigue life was almost the same. The maximum stresses of X, Y, and Z axis direction showed about 2.12${\times}$10$^2$MPa, 4.40${\times}$10$^2$MPa and 1.32${\times}$10$^2$MPa respectively. The Y direction stress showed the highest because of the same direction as the loading direction. The fatigue lives showed about 7% lower FEA result than experiment result showing almost invariable error every analyzed cycle. Stress intensity factor of the FEA result was lower about 3.5∼10% than that of the experiment result showing that the longer fatigue crack length, the higher error. It considered that the cause for the difference was the modeled crack tip having always the same shape and condition regardless of the crack growth.

  • PDF

A Study on the FEM Analysis of Maraging Steel according to Nb content (Nb 함량에 따른 마르에이징강의 유한요소해석에 관한 연구)

  • Choi, Byung-Ky;Choi, Byung-Hui;Kwon, Tack-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.4 s.72
    • /
    • pp.1-8
    • /
    • 2005
  • Effects of Nb(Niobium) contents and solution annealing on the strength and fatigue life of 18%Ni maraging steel commonly using in aircraft, space field, nuclear energy, and vehicle etc. were investigated. Also the fatigue life stress intensity factor were compared experiment result and FEA(finite element analysis) result. The more Nb content, the higher or the lower fatigue life on base metal specimens or solution annealed specimens showing that the fatigue lift was almost the same. The maximum stresses of X, Y, and Z axis direction showed about $2.12{\times}10^2MPa,\;4.40{\times}10^2MPa\;and\;1.32{\times}10^2MPa$ respectively. The Y direction stress showed the highest because of the same direction as the loading direction. The fatigue lives showed about 7% lower FEA result than experiment result showing almost invariable error every analyzed cycle. Stress intensity factor of the FEA result was lower about $3.5{\sim}10%$ than that of the experiment result showing that the longer fatigue crack length the higher error. It considered that the cause for the difference was the modeled crack tip having always the same shape and condition regardless of the crack growth.

Pullout capacity of shallow inclined anchor in anisotropic and nonhomogeneous undrained clay

  • Bhattacharya, Paramita
    • Geomechanics and Engineering
    • /
    • v.13 no.5
    • /
    • pp.825-844
    • /
    • 2017
  • This study aimed to find out the pullout capacity of inclined strip anchor plate embedded in anisotropic and nonhomogeneous fully saturated cohesive soil in undrained condition. The ultimate pullout load has been found out by using numerical lower bound finite element analysis with linear programming. The undrained pullout capacity of anchor plate of width B is determined for different embedment ratios (H/B) varying from 3 to 7 and various inclination of anchor plates ranging from $0^{\circ}$ to $90^{\circ}$ with an interval of $15^{\circ}$. In case of anisotropic fully saturated clay the variation of cohesion with direction has been considered by varying the ratio of the cohesion along vertical direction ($c_v$) to the cohesion along horizontal direction ($c_h$). In case of nonhomogeneous clay the cohesion of the undrained clay has been considered to be increased with depth below ground surface keeping $c_v/c_h=1$. The results are presented in terms of pullout capacity factor ($F_{c0}=p_u/c_H$) where $p_u$ is the ultimate pullout stress along the anchor plate at failure and $c_H$ is the cohesion in horizontal direction at the level of the middle point of the anchor plate. It is observed that the pullout capacity factor increases with an increase in anisotropic cohesion ratio ($c_v/c_h$) whereas the pullout capacity factor decreases with an increase in undrained cohesion of the soil with depth.

Lower body shape classification of adolescent men's students

  • Cha, Su-Joung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.9
    • /
    • pp.97-105
    • /
    • 2018
  • The purpose of this study was to analyze the measurement data of 13 ~ 18 year old male students and to characterize the body shape of the lower body, Through this, I tried to provide basic data for the production of pants for adolescent men's students. As a result of analyzing the body shape factor of the lower half, two factors were classified. 'Vertical factor' of the lower body composed of the circumference, thickness, and width, and the 'horizontal factor' of the lower body composed of the length and height. The body shape of the lower half was classified into four categories according to the circumference and length of the lower half of the male students, such as 'short bird legs', 'long crane legs', 'short pillar' and 'long pillar'. In the study of Hong Eun-hee (2005), body type was classified according to horizontal factor and vertical factor like this study. By age, boys aged 13 to 14 can see that the lower body is thin and short, the lower body is thin and long body is 15-16 years old, and the lower body is relatively thick and long body is 17-18 years old. As the age increases, the growth in the vertical direction occurs first and the growth in the horizontal direction occurs. It is thought that it is necessary to set a different amount of allowance for setting the length and the circumference according to the age of the youth. When the age is young, the amount of allowance in the circumferential direction should be increased, and the amount of allowance in the longitudinal direction after 15 years of age should be increased more than other age groups.

Scale-Up Factor for Seismic Analysis of Building Structure for Various Coordinate Systems (건축구조물의 지진해석에서 좌표축의 설정에 따른 보정계수 산정법)

  • Yu, Il-Hyang;Lee, Dong-Guen;Ko, Hyun;Kim, Tae-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.5
    • /
    • pp.33-47
    • /
    • 2007
  • In a practical engineering, the equivalent static analysis (E.S.A) and the response spectrum analysis (R.S.A) are generally used for the seismic analysis. The base shears obtained from the E.S.A are invariable no matter how the principal axes of building structures are specified on an analysis program while those from the R.S.A are variable. Accordingly, the designed member size may be changed by how an engineer specify the principal axes of a structure when the R.S.A is used. Moreover, the base shears in the normal direction to the excitation axis are sometimes produced even when an engineer performs a response spectrum analysis in only one direction. This tendency makes the base shear, which is used to calculate the scale-up factor, relatively small. Therefore the scale-up factor becomes larger and it results in uneconomical member sizes. To overcome these disadvantages of the R.S.A, an alternative has been proposed in this study. Three types of example structures were adapted in this study, i.e. bi-direction symmetric structure, one-direction antisymmetric structure and bi-direction antisymmetric structure. The seismic analyses were performed by rotating the principal axes of the example structures with respect to the global coordinate system. The design member forces calculated with the scale-up factor used in the practice were compared with those obtained by using the scale-up factor proposed in this study. It can be seen from this study that the proposed method for the scale-up factor can provide reliable and economical results regardless of the orientation of the principal axes of the structures.

The method using dynamic load and static load figures out gust factor of the membrane structure (동적하중과 정적하중을 이용한 막구조의 거스트 계수 산출 방법)

  • Wang, Ben-Gang;Jeong, Jae-Yong;You, Ki-Pyo;Kim, Young-Moon
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.19-24
    • /
    • 2008
  • The thesis is for gust factor needing when calculate the wind resistance design. For the gust factor, to the membrane structural model, carry through the wind tunnel test and the static load test. Therefore, at first through the tensile test of the fabric material, designate the material of the membrane structural model. Then, to saddle, wave, arch and point four kinds of basic shape membrane structural models, carry on the wind tunnel test, determine their dynamic load and distortion on lateral direction. Finally, according to distort situation of the membrane structure in the wind tunnel test, carry on the static load experiment outside of the wind tunnel, calculate static load which corresponding with distort. According to dynamic load and the static load, figure out gust factor of these kinds of basic membrane structure.

  • PDF

The Annual Averaged Atmospheric Dispersion Factor and Deposition Factor According to Methods of Atmospheric Stability Classification

  • Jeong, Hae Sun;Jeong, Hyo Joon;Kim, Eun Han;Han, Moon Hee;Hwang, Won Tae
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.260-267
    • /
    • 2016
  • Background: This study analyzes the differences in the annual averaged atmospheric dispersion factor and ground deposition factor produced using two classification methods of atmospheric stability, which are based on a vertical temperature difference and the standard deviation of horizontal wind direction fluctuation. Materials and Methods: Daedeok and Wolsong nuclear sites were chosen for an assessment, and the meteorological data at 10 m were applied to the evaluation of atmospheric stability. The XOQDOQ software program was used to calculate atmospheric dispersion factors and ground deposition factors. The calculated distances were chosen at 400 m, 800 m, 1,200 m, 1,600 m, 2,400 m, and 3,200 m away from the radioactive material release points. Results and Discussion: All of the atmospheric dispersion factors generated using the atmospheric stability based on the vertical temperature difference were shown to be higher than those from the standard deviation of horizontal wind direction fluctuation. On the other hand, the ground deposition factors were shown to be same regardless of the classification method, as they were based on the graph obtained from empirical data presented in the Nuclear Regulatory Commission's Regulatory Guide 1.111, which is unrelated to the atmospheric stability for the ground level release. Conclusion: These results are based on the meteorological data collected over the course of one year at the specified sites; however, the classification method of atmospheric stability using the vertical temperature difference is expected to be more conservative.

A Study on the Vibration and Dropping Shock of Refrigerator during Physical Distribution (냉장고의 유통 중 진동 및 낙하충격에 관한 연구)

  • Lee, Soo-Keun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.8 no.1
    • /
    • pp.23-26
    • /
    • 2002
  • This study was carried out to investigate vibration shock and dropping shock of refrigerator during physical distribution. The values of vibration shock were measured to be ${\sim}3G$ for up and down direction, ${\sim}0.8G$ for right and left direction and ${\sim}0.5G$ for back and forth direction on the national road. There was no damage during transport. From the results of dropping test by KS A 1026(General Rules of Performance Testing for Packaged Freights), relative equations were gained as follow : y = 0.12x + 7.63(where y is G-factor and x is Dropping height). The maximum values of dropping shock during materials handling were measured to be 11G. This shock value was corresponding to dropping shocks of dropping height 28.3cm by KS A 1026.

  • PDF

Distortion and Dilatatioin in the Tensie Failure of Paper

  • Park, Jong-Moon;James L. Thorpe
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.5
    • /
    • pp.73-85
    • /
    • 1999
  • Yield and fracture are separated in the tensile failure of paper. Failure in the machine direction of photocopy paper is contrasted with failure in the cross-machine direction . The ratios of distortion (shape change) to dilatation (volume change) for individual elements at yield and fracture are described. The ratios of distortion to dilatation are measured and compared to predicted values of the strain energy density theory. To evaluate the effect of the angle from the principal material direction on the strain energy density theory. To evaluate the effect of the angle from the principal material direction on the strain energy density factor, samples are prepared from machine direction to cross-machine direction in 15 degree intervals. the strain energy density of individual elements are obtained by the integration of stress from finite element analysis with elastic plus plastic strain energy density theory. Poison's ratio and the angle from the principal material direction have a great effect ion the ratio fo distortion to dilatation in paper. During the yield condition, distortion prevails over dilatation . At fracture, dilatation is at a maximum.

  • PDF

A Study on the Existing School Renovation Plan Direction for School Facilities Change Direction (학교시설변화 방향에 따른 기존 학교 리노베이션 계획방향에 관한 연구)

  • Kim, Sung-Joong;Lee, Ho-Chin
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.2 no.2
    • /
    • pp.15-33
    • /
    • 2002
  • This study purpose is extract on the architectural principles and architectural planning direction for existing school facility renovation. therefore, This study is occur to renovation from change factor and change direction of the school facility under prerequisite, school facility change direction is with a pedagogy side and it classified with the social side which it bites and it presented. School facility renovation extracted a plan principles with the base which will reach. Was extracted renovation plan Principles to analyze the interrelationship of necessary condition of school facility, It follows in renovation principle presented the renovation plan direction 61 branch.

  • PDF