• Title/Summary/Keyword: direct water

Search Result 1,998, Processing Time 0.039 seconds

Production and Action of Microbial Piscicidal Substance (미생물에 의한 살어성물질의 생성 및 그 작용)

  • 도재호;서정훈
    • Microbiology and Biotechnology Letters
    • /
    • v.6 no.1
    • /
    • pp.41-46
    • /
    • 1978
  • Piscicidal substance produced by Streptomyces sp. isolated from soil was toxic against various kinds of fish. After extraction with CH$Cl_3$ from the culture medium, the substance was purified by avicel column chromatography. In order to test toxicity, various kinds of fish were subjected to the acqueous solution of 100 us of the substance per liter of water. Generally, the substance was toxic to most fish, but Macropodus chinenes and Misgurnus mizolepis are resistant to the substance than Gobius similis and Pseudorasbora parva. The substance was stable at pH range, 3.0 to 7.0, but labile at alkaline pH, and to heat as well. Succinic dehydrogenase on most of tissue cell of Cyprinus carpio was inhibited by this substance strongly, but spinal cord was not inhibited. By addition of Cu and Pb salts to the culture medium, piscicidal substance producibility was activated.

  • PDF

The Present and the Future of Biogas Purification and Upgrading Technologies (바이오가스 정제 및 고질화 기술 현황 및 전망)

  • Heo, Namhyo;Park, Jaekyu;Kim, Kidong;Oh, Youngsam;Cho, Byounghak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.172-172
    • /
    • 2011
  • Anaerobic digestion(AD) has successfully been used for many applications that have conclusively demonstrated its ability to recycle biogenic wastes. AD has been successfully applied in industrial waste water treatment, stabilsation of sewage sludge, landfill management and recycling of biowaste and agricultural wastes as manure, energy crops. During AD, i.e. organic materials are decomposed by anaerobic forming bacteria and fina1ly converted to excellent fertilizer and biogas which is primarily composed of methane(CH4) and carbon dioxide(CO2) with smaller amounts of hydrogen sulfide(H2S) and ammonia(NH3), trace gases such as hydrogen(H2), nitrogen(N2), carbon monoxide(CO), oxygen(O2) and contain dust particles and siloxanes. The production and utilisation of biogas has several environmental advantages such as i)a renewable energy source, ii)reduction the release of methane to the atomsphere, iii)use as a substitute for fossil fuels. In utilisation of biogas, most of biogas produced from small scale plant e.g. farm-scale AD plant are used to provide as energy source for cooking and lighting, in most of the industrialised countries for energy recovery, environmental and safety reasons are used in combined heat and power(CHP) engines or as a supplement to natural. In particular, biogas to use as vehicle fuel or for grid injection there different biogas treatment steps are necessary, it is important to have a high energy content in biogas with biogas purification and upgrading. The energy content of biogas is in direct proportion to the methane content and by removing trace gases and carbon dioxide in the purification and upgrading process the energy content of biogas in increased. The process of purification and upgrading biogas generates new possibilities for its use since it can then replace natural gas, which is used extensively in many countries, However, those technologies add to the costs of biogas production. It is important to have an optimized purification and upgrading process in terms of low energy consumption and high efficiency giving high methane content in the upgraded gas. A number of technologies for purification and upgrading of biogas have been developed to use as a vehicle fuel or grid injection during the passed twenty years, and several technologies exist today and they are continually being improved. The biomethane which is produced from the purification and the upgrading process of biogas has gained increased attention due to rising oil and natural gas prices and increasing targets for renewable fuel quotes in many countries. New plants are continually being built and the number of biomethane plants was around 100 in 2009.

  • PDF

Economic Impact Analysis on a R&D Project of Groundwater Remediation : A Case Study of Busan, Ulsan and Gwangju Metropolitan City (지하수자원기술의 경제적 파급효과분석 사례연구 - 대도시지역(부산, 울산, 광주) 지하수오염저감기술연구사업을 중심으로 -)

  • Ahn Eun-Yuung;Kim Seong-Yong;Lee Jae-Wook;Son Byeong-Kook;Kim Jeong-Chan;Synn Joong-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.1
    • /
    • pp.18-25
    • /
    • 2005
  • For economic impact analysis on a R&D project of groundwater remediation in the metropolitan areas conducted as a fundamental research programme of KIGAM from 1998 to 2002, benefit/cost ratio(BCR), net present value(NPV), and internal rate of return(IRR) were calculated using a contingent valuation method(CVM). Measurable direct benefit parameters among the major outputs of this project consist of setup of drinking water facilities and groundwater information data valuation. In this study, economic impact of the project in NPV of year 2002, with applying a discount rate of $10.0\%$, was identified and estimated as 5.09 billion won in cost, 67.69 billion won in benefit, 62.60 billion won in NPV, 13.3 points in BCR, and $152\%$ in IRR, respectively.

Runoff Characteristics of the Oedocheon Watershed in Jeju Island (제주도 외도천유역의 유출특성)

  • Ha, Kyoo-Chul;Moon, Deok-Cheol;Koh, Ki-Won;Park, Ki-Hwa
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.5
    • /
    • pp.20-32
    • /
    • 2008
  • Runoff characteristics of the Oedocheon in Jeju island were investigated using the long-term stream stage monitoring data. At the Cheonah valley in the upstream area and Oedocheon downstream, annual runoff occurred 21 and 12 times, respectively, and their average runoff periods were 21 days and 12 days, respectively. Stream stage response time to rainfall was 4 hours, and storm-water transfer from the upstream, Cheonah valley, to the Oedocheon downstream took about 2 hours. The stream discharge measurements had been carried out from Feb. 2004 to Jul. 2005, and showed that normal discharge of the Oedocheon was 0.39 $m^3$/sec in average. Stage-discharge curves were developed to estimate base flow (normal discharge) and (direct) surface runoff. The base flow separations by a numerical filtering technique illustrated that annual surface runoff and base flow accounted respectively for 31.8${\sim}$36.5%, 63.5${\sim}$68.2% of the total stream discharge.

Effects of Seeding Dates on Lodging in Water Seeding of Rice (벼 담수표면 직파재배에서 파종기가 도복에 미치는 영향)

  • 송동석;김용재;이성춘
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.2
    • /
    • pp.157-167
    • /
    • 1996
  • The method of direct seeding on flooded paddy surface in rice is known to be the most labor saving cultural practice in rice. However, this method has a problem in practical use such as severe lodging occurring at the reproductive growth stage. The objectives of this study were observated degree of field lodging and variation of lodging-related characteristics with different seeding dates. The number of seedlings per m$^2$ were from 91 to 144 plants, and seedling ratios were from ranged from 61.7% to 91.8%. Days from seeding to flowering were shortened from 5 to 15 days by the later seeding dates. Heading dates of Ilpumbyeo, Seoanbyeo, Daecheongbyeo and Donjinbyeo on June 9 showed slightly elapsed on the critical stable heading time from, August 28 to 29. The culm length was effective in longer clum varieties than semidwarf varieties. The degree field lodging (degree of lodging: 0~9< 9 : complete lodging) in Obongbyeo and S101 with semidwarf varieties were 0.17, whereas 1.25 in Dongjinbyeo with long culm. The lodging resistant varieties and later seeding dates shortened the length of fibrous in the clum, and thickened fibrous in the clum, respectively. Obongbyeo and Sl0l showed stronger resistance to field lodging. The lodging resistant varieties, Obongbyeo and Sl0l, showed lower values of lodging index from 1.03 to 1.15 than those of lodging susceptible varieties, Daecheongbyeo and Palgongbyeo ranged from 1.42 to 1.70. Bending moment with leaf sheath were greater in lodging resistant varieties (Obongbyeo and Sl0l),1510.0~1930.4g.cm, than those in the lodging susceptible varieties (Daecheongbyeo and Palgongbyeo), 1127.2~1287.6g.cm.

  • PDF

Sequential Anoxic/Aerobic Biofilm Reactors and MF Membrane System for the Removal of Perchlorate and Nitrate (무산소/호기생물막반응조와 MF막의 연속처리에 의한 퍼클로레이트와 질산염 제거)

  • Choi, Hyeoksun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.5
    • /
    • pp.301-306
    • /
    • 2013
  • This research was conducted to investigate whether sequential anoxic/aerobic biofilm reactors and microfilteration (MF) membrane system can be used as a direct treatment for the removal of perchlorate and nitrate in groundwater. The biofilm process consisted of an anoxic first stage to remove perchlorate and nitrate and aerobic second stage to remove remaining acetate used as a carbon source for dissimilatory reduction of perchlorate and nitrate. In final stage, hollow fiber MF membrane was used to remove turbidity. In this research, perchlorate was reduced from the influent concentration of 102 ${\mu}/L$ to below the IC detection level (5 ${\mu}/L$) and nitrate was reduced from 61.8 mg/L (14 mg/L $NO_3$-N) to 4.4 mg/L (1 mg/L $NO_3$-N). Acetate used as a carbon source was consumed from 179 mg/L $CH_3COO-$ to 117 and 11 mg/L $CH_3COO^-$ in effluents from anoxic and aerobic biofilm reactors, respectively. Turbidity was reduced from 3.0 NTU to 1.5, 0.3, and 0.2 NTU in effluents from anoxic/aerobic biofilm reactors and MF membrane, respectively. It is expected that the sequential anoxic/aerobic biofilm reactors and MF membrane system can efficiently remove perchlorate and nitrate in surface water or groundwater.

Anti-mycobacterial Effects of the Extract of Humulus japonicus (환삼덩굴(Humulus japonicus) 추출물의 항결핵 효과)

  • Hong, Min-Sun;Son, Eun-Soon;Lee, Sung-Joong;Lee, Sun-Kyoung;Lee, Ye-Jin;Song, Sun-Dae;Cho, Sang-Nae;Barry, Clifton E. III;Eum, Seok-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.94-99
    • /
    • 2014
  • The present study aimed to evaluate the in vitro antimycobacterial effects of hop plant, Humulus japonicus. Methanol extract of H. japonicus (MeOH extract) showed strong direct bactericidal effects against Mycobacterium tuberculosis in vitro. Furthermore, the MeOH extract significantly inhibited M. tuberculosis growth in human macrophages. When five fractions obtained from MeOH extract were examined using the same methods, the hexane and ethyl acetate fractions showed bactericidal effects against M. tuberculosis in vitro, whereas the butanol and water fractions inhibited M. tuberculosis growth in macrophages. Because H. japonicus extract exhibited antimycobacterial activity against both free M. tuberculosis in culture medium and intracellular M. tuberculosis in human macrophages, this plant might be a good candidate for development of a new anti-tuberculosis drug.

Bioequivalence of S-napine Tablet 10 mg to Alesion Tablet(Epinastine HCl 10 mg) (알레지온 정(염산에피나스틴 10mg)에 대한 에스나핀 정 10밀리그람의 생물학적동등성)

  • Kang, Hyun-Ah;Cho, Hea-Young;Yoon, Hwa;Kim, Se-Mi;Kim, Dong-Ho;Park, Sun-Ae;Kim, Hwan-Ho;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.6
    • /
    • pp.405-411
    • /
    • 2006
  • Epinastine is an antiallergic drug effective for bronchial asthma, allergic rhinitis, urticaria and dermatitis. Epinastine is topically active, direct H1-receptor antagonist and an inhibitor of the release of histamine from the mast cell. The purpose of the present study was to evaluate the bioequivalence of two epinastine hydrochloride tablets, Alesion Tablet (Boehringer Ingelheim Korea Ltd.) and S-napine tablet 10 mg(Sam Chun Dang Pharm. Co., Ltd), according to the guidelines of the Korea Food and Drug Administration(KFDA). The release of epinastine from the two epinastine formulations in vitro was tested using KP VIII Apparatus II method with various dissolution media(pH 1.2, 4.0, 6.8 buffer solution and water). Twenty six healthy male subjects, $23.35{\pm}1.57$ years in age and $66.29{\pm}10.61kg$ in body weight, were divided into two groups and a randomized $2{\times}2$ cross-over study was employed. After two tablets containing 20 mg as epinastine hydrochloride was orally administered, blood was taken at predetermined time intervals and the concentrations of epinastine in serum were determined using HPLC with UV detector. The dissolution profiles of two formulations were similar at all dissolution media. In addition, the pharmacokinetic parameters such as $AUC_t,\;C_{max}\;and\;T_{max}$ were calculated and ANOVA test was utilized for the statistical analysis of the parameters using logarithmically transformed $AUC_t.\;C_{max}$ and untransformed $T_{max}$. The results showed that the differences between two formulations based on the reference drug, Alesion tablet, were 1.50, 1.46 and -13.48% for $AUC_t,\;C_{max}\;and\;T_{max}$, respectively. There were no sequence effects between two formulations in these parameters. The 90% confidence intervals using logarithmically transformed data were within the acceptance range of log 0.8 to log 1.25(e.g., log 0.95$\sim$log 1.12 and log 0.93$\sim$log 1.10 for $AUC_t\;and\;C_{max}$, respectively). Thus, the criteria of the KFDA bioequivalence guideline were satisfied, indicating S-napine tablet 10 mg was bioequivalent to Alesion tablet.

Design and Performance Analysis of Conical Solar Concentrator

  • Na, Mun Soo;Hwang, Joon Yeal;Hwang, Seong Geun;Lee, Joo Hee;Lee, Gwi Hyun
    • Journal of Biosystems Engineering
    • /
    • v.43 no.1
    • /
    • pp.21-29
    • /
    • 2018
  • Purpose: The objective of this study is to evaluate the performance of the conical solar concentrator (CSC) system, whose design is focused on increasing its collecting efficiency by determining the optimal conical angle through a theoretical study. Methods: The design and thermal performance analysis of a solar concentrator system based on a $45^{\circ}$ conical concentrator were conducted utilizing different mass flow rates. For an accurate comparison of these flow rates, three equivalent systems were tested under the same operating conditions, such as the incident direct solar radiation, and ambient and inlet temperatures. In order to minimize heat loss, the optimal double tube absorber length was selected by considering the law of reflection. A series of experiments utilizing water as operating fluid and two-axis solar tracking systems were performed under a clear or cloudless sky. Results: The analysis results of the CSC system according to varying mass flow rates showed that the collecting efficiency tended to increase as the flow rate increased. However, the collecting efficiency decreased as the flow rate increased beyond the optimal value. In order to optimize the collecting efficiency, the conical angle, which is a design factor of CSC, was selected to be $45^{\circ}$ because its use theoretically yielded a low heat loss. The collecting efficiency was observed to be lowest at 0.03 kg/s and highest at 0.06 kg/s. All efficiencies were reduced over time because of variations in ambient and inlet temperatures throughout the day. The maximum efficiency calculated at an optimum flow rate of 0.06 kg/s was 85%, which is higher than those of the other flow rates. Conclusions: It was reasonable to set the conical angle and mass flow rate to achieve the maximum CSC system efficiency in this study at $45^{\circ}$ and 0.06 kg/s, respectively.

Accelerating effect of some photosensitizers on photodegradation of the herbicide quinclorac in aqueous solution and soil (감광제에 의한 수용액 및 토양 중 제초제 quinclorac의 광분해 촉진효과)

  • Ahn, Ki-Chang;Lee, Jae-Koo
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.4
    • /
    • pp.12-18
    • /
    • 2000
  • In order to artificially reduce the quinclorac residue in aqueous solution and soil, six potential photosensitizers were screened for their effectiveness in enhancing the photodegradation. The degraded amount of quinclorac in distilled water by sunlight was minor compared to that in the dark, indicating that there was little direct photolysis. The photodegradation ratio of quinclorac in methanol was 40.3%. Whereas, the ratios in the presence of photosensitizers PS-1 (aromatic ketone), PS-3 (polycyclic quinone), and PS-6 (inorganic semiconductor) were 96.6, 72.7, and 95.7%, respectively, showing the most photosensitizing effects. In sand, PS-3 was more effective than any other photosensitizer PS-1 (19.6%), PS-3 (64.1%) and PS-6 ($17.9{\sim}19.4%$). five photoproducts of quinclorac in methanol were identified by GC-MS and quinclorac added with the photosensitizer PS-1 gave three photoproducts. Photoproducts with an aldehyde group formed in methanol were confirmed by the reduction of sodium 3,5-dinitrosalicylate in the Lindsay's method. E. crus-galli war. oryzicola was not controlled by the quinclorac residues photodegraded at tile concentrations higher than 30 ppm of the photosensitizer PS-3 in a flooded rice paddy soil. These results indicate that the quinclorac residues in aqueous solution and soil can be degraded efficiently by tile photosensitizers PS-1, PS-3, and PS-6.

  • PDF