• Title/Summary/Keyword: direct tensile test

Search Result 166, Processing Time 0.025 seconds

Performance Evaluation of Stress Absorbing Membrane Interlayer Using Epoxy Asphalt Binder (에폭시 아스팔트 바인더를 이용한 응력흡수층의 성능평가)

  • Jo, Shin Haeng;Lee, Bong Lim;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.6
    • /
    • pp.1043-1051
    • /
    • 2017
  • Asphalt overlay on deteriorated concrete pavement has a problem of early damage due to reflective cracking. There is a need for a new method capable of reducing reflection cracking and ensuring the durability of pavement. The purpose of this study was to obtain durability of asphalt overlay with stress absorbing membrane interlayer (SAMI) using epoxy asphalt binder. The tensile performance, durability, water resistance and bonding performance of Epoxy-SAMI were evaluated by various tests. As a result of tests, Epoxy-SAMI meets the quality standard of the bridge waterproofing material. The repeated direct tensile test was carried out to investigate the effect of reflective cracking reduction. When the Epoxy-SAMI was applied, it had 1.2~1.56 times higher reflective cracking resistance than PSMA asphalt concrete with the thickness of 10cm even if the section thickness decreased. 4-point bending beam test results showed the number of fatigue failures increased 7.5 times when Epoxy-SAMI was applied. The Epoxy-SAMI was found to be effective in improving the durability of the asphalt pavement overlay because it serves to prevent reflective cracking, increase lifespan, and function as a waterproof layer.

Bond Behavior between Parent Concrete and Carbon Fiber Mesh (탄소섬유메쉬와 콘크리트의 부착거동)

  • Yun, Hyun-Do;Sung, Soo-Yong;Oh, Jae-Hyuk;Seo, Soo-Yeon;Kim, Tae-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.769-777
    • /
    • 2003
  • The strengthening of concrete structures in situ with externally bonded carbon fiber is increasingly being used for repair and rehabilitation of existing structures. Because carbon fiber is attractive for this application due to its good tensile strength, resistances to corrosion, and low weight. Generally bond strength and behavior between concrete and carbon fiber mesh(CFM) is very important, because of enhancing bond of CFM. Therefore if bond strength is sufficient, it will be expect to enhance reinforcement effect. Unless sufficient, expect not to enhance reinforcement effect, because of occuring bond failure between concrete and CFM. In this study, the bond strength and load-displacement response of CFM to the concrete by the direct pull-out test(the tensile-shear test method) were investigated using the experiment and the finite element method analysis with ABAQUS. The key variables of the experiment are the location of clip, number of clips and thickness of cover mortar. The general results indicate that the clip anchorage technique for increasing bond strength with CFM appear to be effective to maintain the good post-failure behavior.

Mechanical Properties of an ECC(Engineered Cementitious Composite) Designed Based on Micromechanical Principle (마이크로역학에 의하여 설계된 ECC (Engineered Cementitious Composite)의 역학적 특성)

  • Kim Yun-Yong;Kim Jeong-Su;Kim Hee-Sin;Ha Gee-Joo;Kim Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.709-716
    • /
    • 2005
  • The objective of this study is to develop a high ductile fiber reinforced mortar, ECC(Engineered Cementitious Composite) with using raw material commercially available in Korea. A single fiber pullout test and a wedge splitting test were employed to measure the bond properties in a matrix and the fracture toughness of mortar matrix respectively, which are used for designing mix proportion suitable for achieving strain-hardening behavior at a composite level. Test results showed that the properties tended to increase with decreasing water-cement ratio. A high ductile fiber reinforced mortar has been developed by employing micromechanics-based design procedure. Micromechanical analysis was initially peformed to properly select water-cement ratio, and then basic mixture proportion range was determined based on workability considerations, including desirable fiber dispersion without segregation. Subsequent direct tensile tests were performed on the composites with W/C's of 47.5% and 60% at 28 days that the fiber reinforced mortar exhibited high ductile uniaxial tension property, represented by a maximum strain capacity of 2.2%, which is around 100 times the strain capacity of normal concrete. Also, compressive tests were performed to examine high ductile fiber reinforced mortar under the compression. The test results showed that the measured value of compressive strength was from 26MPa to 34 MPa which comes under the strength of normal concrete at 28 days.

A Study on the Change of Tensile Force of Friction Type Anchor under Shear Deformation of Ground (지반의 전단변형에 따른 마찰형 앵커의 긴장력 변화에 대한 연구)

  • You, Min-Ku;Kwon, O-Il;Lee, Sang-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.4
    • /
    • pp.13-25
    • /
    • 2018
  • When deformation occurs on slope reinforced with anchor, shear stress and bending stress are applied on the shear surface along the slip surface and increase of the shear deformation causes the tension force variation of the anchor. In this study, shear test was performed by measuring the tension force of the anchor by inducing shear deformation in vertical direction of the anchor using a large-scale direct shear test equipment in order to confirm the tension force variation of the anchor induced by shear deformation. The shear test was performed for 8 conditions which were classified according to the anchor reinforcement, separation distance (1D, 2D, 4D) from the shear surface to bonded part and the lateral-pressure condition (0.1 MPa, 0.2 MPa) of adjacent ground. As a result of the shear test, it was found that the separation distance and the lateral-pressure condition affect the shear force of the ground reinforced by anchor and the tension force of the anchor, and experimentally verified that the shear force variation is related to axial force variation of the anchor head and tip. Therefore, it was confirmed that the behavior of the bonded part induced by the shear deformation can be indirectly predicted by analyzing the tendency of the tension force variation of the anchor head.

Development of Additive to Modify the SDAR (Solvent DeAsphalting Residue) and Laboratory Performance Evaluation of Asphalt Mixture with Modified SDAR (고품위화 정제공정 부산물(SDAR) 활용을 위한 첨가제 개발 및 이를 이용한 아스팔트 혼합물의 실내 공용성능 평가)

  • Baek, Cheolmin;Yang, Sung Lin;Hwang, Sung Do
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.97-104
    • /
    • 2016
  • OBJECTIVES : The objective of this research is to develop additives for the modification of Solvent DeAsphalting Residue (SDAR) to be used as pavement materials, and evaluate the performance of asphalt mixture manufactured using the SDAR modified by developed additives. METHODS : The SDAR generally consists of more asphaltenes and less oil components compared to the conventional asphalt binder, and hence, the chemical/physical properties of SDAR are different from that of conventional asphalt binder. In this research, the additives are developed using the low molecular oil-based plasticizer to improve the properties of SDAR. First, the chemical property of two SDARs is analyzed using SARA (saturate, aromatic, resin, and asphaltene) method. The physical/rheological properties of SDARs and SDARs containing additives are also evaluated based on PG-grade method and dynamic shear-modulus master curve. Second, various laboratory tests are conducted for the asphalt mixture manufactured using the SDAR modified with additives. The laboratory tests conducted in this study include the mix design, compactibility analysis, indirect tensile test for moisture susceptibility, dynamic modulus test for rheological property, wheel-tracking test for rutting performance, and direct tension fatigue test for cracking performance. RESULTS : The PG-grade of SDARs is higher than PG 76 in high temperature grades and immeasurable in low temperature grades. The dynamic shear modulus of SDARs is much higher than that of conventional asphalt, but the modified SDARs with additives show similar modulus compared to that of conventional asphalt. The moisture susceptibility of asphalt mixture with modified SDARs is good if, the anti-stripping agent is included. The performance (dynamic modulus, rutting resistance, and fatigue resistance) of asphalt mixture with modified SDARs is comparable to that of conventional asphalt mixture when appropriate amount of additives is added. CONCLUSIONS : The saturate component of SDARs is much less than that of conventional asphalt, and hence, it is too hard and brittle to be used as pavement materials. However, the modified SDARs with developed additives show comparable or better rheological/physical properties compared to that of conventional asphalt depending on the type of SDAR and the amount of additives used.

Mechanical Property Enhancement of Water Soluble Polymer Pouch for Ground Reinforcement (지반함몰 긴급복구용 수용성 폴리머 파우치의 기계적 물성강화)

  • Jung, Dongho;Chung, Dasom;You, Seung-Kyong;Kim, Joo-Hyun;Han, Jung-Geun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.221-230
    • /
    • 2017
  • We developed a polymer pouch using PVP that is water soluble in the precedent study. Yet melt viscosity was so low that it was not possible to produce hemispheric type which is essential for mass production, therefore we used another material to make the polymer pouch. It enabled to figure out a water-soluble transition and mechanic physical property of PEG that is newly chosen, and to blend the PEG with LLDPE and TALC followed by result. So, we could implement an evaluating property on blended proportion. It is important to find out a proper blending ratio throughout an experiment since its property is different or varied followed by each proportion as a water soluble character is conflict to a solid character. With the blending technique we were able to produce the polymer pouch enhanced for a tensile force and an impact intensity maintaining a water soluble character. We could identify a ground solidity effect of the polymer pouch as a result of a direct shear test using the product developed.

Microstructures and Mechanical Properties of Extruded Al 7050 Billet and Ring Forged One with Large Scale

  • Bae, Dong-Su;Joo, Kyung-Hwan;Lee, Jin-Kyung;Lee, Sang-Pill;Chang, Chang-Beom;Hong, Sung-Seop;Park, Tae-Won
    • Journal of Power System Engineering
    • /
    • v.20 no.6
    • /
    • pp.40-45
    • /
    • 2016
  • The manufacturing process of large scaled Al 7050 alloy is difficult for the occurrence of solidification crack during casting. The aims of this study are the evaluations of microstructure and mechanical properties of extruded Al 7050 billet and ring forged one with large scale. Large scaled Al 7050 billet was casted by direct-chill casting process. The extruded and ring forged specimens were prepared from the casted ingot after residual stress relief and homogenization heat treatment, respectively. Microstructures, hardness and tensile test of the surface, middle and center part of each specimen were performed at room temperature. Sheared and elongated type grains were observed at the edge parts of surface and center area and its aspect ratios of grains were low and similar as 0.21 while that of middle area was closed to 0.92 value in ring forged Al 7050 alloy. The mechanical properties of extruded Al 7050 alloy were superior than those of ring forged one. The hardness values of surface and center part were slightly higher than that of middle part in ring forged Al 7050 alloy.

Evaluation of Flexural Behavior of Masonry Members Reinforced with Engineered Cementitious Composite (고인성 복합체로 보강한 조적부재의 휨 거동 평가)

  • Yang, Seung-Hyeon;Kim, Sun-Woong;Kim, Jae-Hwan;Kang, Suk-Pyo;Hong, Seong-Uk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.37-45
    • /
    • 2021
  • This paper is a basic study to evaluate the possibility of earthquake-resistant reinforcement by reinforcing engineered cementitious composite in masonry members. In order to examine the performance according to the fiber mixing rate of the engineered cementitious composite, a test specimen was prepared according to the formulation design, and flow ability, compressive strength, flexural strength, length change rate, and direct tensile strain were measured. In addition, non-reinforced masonry members, masonry members reinforced with engineered cementitious composite, and masonry members in which glass fibers and wire mesh were separately reinforced with engineered cementitious composites were manufactured, and flexural strength and maximum displacement were measured. All specimens reinforced with engineered cementitious composite showed more than 16 times the effect of maximal strength compared to that of no reinforcement, and as a result of examining the crack shape, the energy dissipation ability was excellent, confirming the possibility of seismic reinforcement.

An Evaluation on Quality of Field Trial Protocol using Pay Factor and Analysis of Fatigue Life (지불계수를 이용한 시험포장구간의 품질평가와 피로수명 분석)

  • Lee, Jae-Hack;Rhee, Suk-Keun;Kim, Seong-Min;Hwang, Sang-Min
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.133-142
    • /
    • 2009
  • This research is performed to estimate quality of trial pavement for construction and analyze effect of fatigue life by using the pay factor. Specially, asphalt content which is difficult to control the pavement quality, is selected by pay adjustment standard factors and pay factor is calculated by asphalt content. This research is also analyzed to present relation of fatigue life according to asphalt content, to evaluate quality of the road pavement by calculating pay factor of sampling trial field mixture 2 times. This research confirms that it is different quality of road pavement according to pay factor changes. To analyze the fatigue life of pavement by using asphalt mixture for trial field. As a result, it is conformed that high pay factor could be high fatigue life of trial field. This means that pay factor using probability theory reflects road pavement fatigue life. Also, this study is included that beam fatigue test manufacturing specimen such as mixing type of plant which purvey asphalt mixture to trial field, compared with fatigue life of trial field. As a result, the fatigue life of specimen that is manufactured by mix type is higher than trial field specimen. This means that performance of road pavement can be reduced by gradation or other effects. Therefore, to exactly evaluate the quality of road pavement, pay factor should be calculated appling various pay adjustment standard factors such as gradation, air-void in U.S. states which is adopted pay adjustment.

  • PDF

Bonding Characteristics of Directly Bonded Si wafer and Oxidized Si wafer by using Linear Annealing Method (선형열처리법으로 직접 접합된 Si 기판 및 산화된 Si 기판의 접합 특성)

  • Lee, Jin-Woo;Gang, Choon-Sik;Song, Oh-Seong;Ryu, Ji-Ho
    • Korean Journal of Materials Research
    • /
    • v.10 no.10
    • /
    • pp.665-670
    • /
    • 2000
  • Linear annealing method was developed to increase the bond strength of Si wafer pair mated at room tem­perature instead of conventional furnace annealing method. It has been known that the interval of the two mating wafer surfaces decreases and the density of gaseous phases generated at the interface increases with increase in an-nealing temperature. The new annealing method consisting of one heat source and light reflecting mirror used these two phenomena and was applied to Si$\mid$$\mid$Si and Si$\mid$$\mid$$SiO_2/Si$ bonding. The bonding interface observed directly by using IR camera and HRTEM showed clear bonding interface without any unbonded areas except the area generated by the dusts inserted into the mating interface at the room temperature. Crack opening method and direct tensile test was ap­pplied to measure the bond strength. The two methods showed similar results. The bond strength increased continuous­tly with the increase of annealing temperature.

  • PDF