• Title/Summary/Keyword: direct stiffness method

Search Result 183, Processing Time 0.025 seconds

A Study on the Static Sensitivity Analysis Algorithm Using the Transfer of Stiffness Coefficient (강성계수의 전달을 이용한 정적 감도해석 알고리즘에 관한 연구)

  • Choi, Myung-Soo
    • Journal of Power System Engineering
    • /
    • v.5 no.4
    • /
    • pp.82-89
    • /
    • 2001
  • To design a structural or a mechanical system with the best performance, the main procedure of a typical design usually consists of repeated modifications of design parameters and the investigation of the system response for each set of these parameters. But this procedure requires much time, effort and experience. Sensitivity analysis can provide systematic information for improving performance of a system. The author has studied on the development of the structural analysis algorithm and suggested recently the transfer stiffness coefficient method(TSCM). This method is very suitable algorithm to a personal computer because the concept of the TSCM is based on the transfer of the nodal stiffness coefficients which are related to force and displacement vectors at each node. In this paper, a new sensitivity analysis algorithm using the concept of the TSCM is formulated for the computation of state variable sensitivity in static problems. The trust of the proposed algorithm is confirmed through the comparison with the computation results using existent sensitivity analysis algorithm and reanalysis for computation models.

  • PDF

Direct Control of Displacement Using Displacement and Resistance Force Contribution Factor (변위 및 내력기여도계수를 이용한 정량적 변위 제어)

  • Kim, Young-Min;Kim, Chee-Kyeong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.3 s.17
    • /
    • pp.91-100
    • /
    • 2005
  • The paper presents a direct method for the diplacement control and stiffness redesign using displacement and response force contribution factors. At first, these two kinds of factors are derived and the relationship between them is examined. An equation to evaluate the change of displacement according to the change of each member stiffness is proposed. For the statically determinate structures, the proposed equation gives the exact solution with no approximation. But it has some error in case of statically indeterminate structures because the redistribution of response forces is neglected in the equation. However, the equation may be very useful even for statically indeterminate structures because it provides the relationship between the member stiffness and the global displacement. The proposed method is expected to be useful for the displacement control of large space or hi-rise building structures where the stiffness design governs the design result.

  • PDF

Direct Inelastic Strut-Tie Model Using Secant Stiffness (할선강성을 이용한 직접 비탄성 스트럿-타이 모델)

  • Park Hong-Gun;Kim Yun-Gon;Eom Tae-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.201-212
    • /
    • 2005
  • A new strut-tie model using secant stiffness, Direct Inelastic Strut-Tie Model, was developed. Since basically the proposed design method uses linear analysis, it is convenient and stable in numerical analysis. At the same time, the proposed design method can accurately estimate the inelastic strength and ductility demands of struts and ties because it can analyzes the inelastic behavior of structure using iterative calculations for secant stiffness. In the present study, the procedure of the proposed design method was established, and a computer program incorporating the proposed method was developed. Design examples using the proposed method were presented, and its advantages were highlighted by the comparison with the traditional strut-tie model. The Direct Inelastic Strut-Tie Model, as an integrated analysis/design method, can directly address the design strategy intended by the engineer to prevent development of macro-cracks and brittle failure of struts. Since the proposed model can analyze the inelastic deformation, indeterminate strut-tie model can be used. Also, since the proposed model controls the local deformations of struts and ties, it can be used as a performance-based design method for various design criteria.

The Properties of a Nonlinear Direct Spectrum Method for Estimating the Seismic Performance (내진성능평가를 위한 비선형 직접스펙트럼법의 특성)

  • 강병두;김재웅
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.65-73
    • /
    • 2002
  • It has been recognized that the damage control must become a more explicit design consideration. In an effort to develop design methods based on performance it is clear that the evaluation of the nonlinear response is required. The methods available to the design engineer today are nonlinear time history analyses, monotonic static nonlinear analyses, or equivalent static analyses with simulated nonlinear influences. Some building codes propose the capacity spectrum method based on the nonlinear static analysis(pushover analysis) to determine the earthquake-induced demand given by the structure pushover curve. These procedures are conceptually simple but iterative and time consuming with some errors. This paper presents a nonlinear direct spectrum method(NDSM) to evaluate seismic performance of structures, without iterative computations, given by the structural initial elastic period and yield strength from the pushover analysis, especially for MDF(multi degree of freedom) systems. The purpose of this paper is to investigate the accuracy and confidence of this method from a point of view of various earthquakes and unloading stiffness degradation parameters. The conclusions of this study are as follows; 1) NDSM is considered as practical method because the peak deformations of nonlinear system of MDF by NDSM are almost equal to the results of nonlinear time history analysis(NTHA) for various ground motions. 2) When the results of NDSM are compared with those of NTHA. mean of errors is the smallest in case of post-yielding stiffness factor 0.1, static force by MAD(modal adaptive distribution) and unloading stiffness degradation factor 0.2~0.3.

The Effect of Gaps in Concrete Bearing Surface of Direct Fixation Track on Vehicle and Track Interaction (직결궤도 체결구 하부에 발생한 단차가 차량/궤도 상호작용에 미치는 영향)

  • Yang, Sin-Chu;Kim, Eun
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.50-57
    • /
    • 2010
  • Various installation faults may lie in fasteners in the construction of a direct-fixation track by the top-down method. At an extreme, they may cause excessive interaction between the train and track, compromise the running safety of the train, and cause damage to the track components. Therefore, the faults need to be kept within the allowable level through an investigation of their effects on the interactions between the train and track. In this study, the vertical dynamic stiffness of fasteners in installation faults was measured based on the dynamic stiffness test by means of an experimental apparatus that was devised to feasibly reproduce gap faults. This study proposes an effective analytical model for a train-track interaction system in which most elements, except the nonlinear wheel-rail contact and some components that behave bi-linearly, exhibit linear behavior. To investigate the effect of the behavior of fasteners in gap faults in a direct-fixation track on the vehicle and track, vehicle-track interaction analyses were carried out, targeting key review parameters such as the wheel load reduction factor, vertical rail displacement, rail bending stress, and mean stress of the elastomer. From the results, it was noted that the gap faults in the concrete bearing surface of a direct-fixation track need to be limited for the sake of the long-term durability of the elastomer than for the running safety of the train or the structural safety of the track.

  • PDF

Determination of Dynamic Parameters of Agricultural Tractor Cab-Suspension by Modal Analysis (모드 해석을 이용한 트랙터 캡-현가 장치의 동적 파라미터 결정에 관한 연구)

  • 조진상;김경욱;박홍제
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.216-223
    • /
    • 1999
  • This study was intended to determine the inertia , damping and stiffness properties of the cab-suspension of agricultural tractors by applying the direct system identification method (DSIM). Since the rigid and elastic modes of the cab-suspension are not likely to be separated clearly, direct application of the DSIM may result in large computation error. To solve such a problem, a method of locating mass center of the cab were determined by assuming the behavior of the cab-suspension is a rigid body motion. The dynamic parameters of the cab-suspension were then determined by applying the DSIM with the known coordinates of the mass center. The constraints of spatial matrices of the cab-suspension also make the algorithm for the DSIM perform better. The values of dynamic parameters determined by this method agreed well with those determined by the experiment.

  • PDF

A Compliant Contact Control Strategy for Robot Manipulators with Unknown Environment

  • Kim, Byoung-Ho;Chong, Nak-Young;Oh, Sang-Rok;Suh, Il-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.20-25
    • /
    • 1998
  • This paper proposes a new compliant contact control strategy for the robot manipulators accidentally interacting with an unknown environment. The main features of the proposed method are summarized as follows: First, each entry in the diagonal stiffness matrix corresponding to the task coordinate in Cartesian space is adaptively adjusted during con-tact along the corresponding axis based on the contact force with its environment. Second, it can be used for both unconstrained and constrained motions without any switching mechanism which often causes undesirable instability and/or vibrational motion of the end effector. Third, the adjusted stiffness gains are automatically recovered to initially specified stiffness gains when the task is changed from constrained motion to unconstrained motion. The simulation results show the effectiveness of the proposed method by employing a two-link direct drive manipulator interacting with an unknown environment.

  • PDF

Direct Earthquake Design Using Secant Stiffness (할선강성을 이용한 직접내진설계)

  • 박홍근;엄태성
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.239-246
    • /
    • 2003
  • A new earthquake design method performing iterative calculations using secant stiffness was developed. The proposed design method has the advantages of convenience and stability in numerical analysis because it uses elastic analysis. At the same time, the proposed design method can accurately estimate the strength and ductility demands on the members because it performs the analysis on the inelastic behavior of structure using iterative calculation. In the present study, the procedure of the proposed design method was established, and a computer program incorporating the proposed method was developed. Design examples using the proposed method were presented, and its advantages were presented by the comparisons with existing design methods using elastic or inelastic analysis. The proposed design method, as an integrated method of analysis and design, can address the earthquake design strategy devised by the engineer, such as ductility limit on each member, the design concept of strong column - weak beam, and etc. Through iterative calculations on the structure preliminarily designed only with member sizing, the strength and ductility demands of each member can be directly calculated so as to satisfy the given design strategy As the result economical and safe design can be achieved.

  • PDF

Relationship between shear behavior characteristics and mechanical parameters of fractures (절리면에서의 전단거동 특성과 역학적 파라미터들 간의 상관성)

  • 이종욱;이찬구;황신일;장천중;최원학
    • The Journal of Engineering Geology
    • /
    • v.3 no.1
    • /
    • pp.1-20
    • /
    • 1993
  • In this study, laboratory direct shear tests on 37 core specimens of gneiss were performed to examine the characteristics of shear behavior on fractures by using a portable direct shear box. The multi-stage shear testing method was used and normal stress applied to specimens ranges from 5.60 to $25.67kg/\textrm{cm}^2$. On the basis of test results, the empirical equations for the shear strength on fractures were suggested. The methanical parameters that can influence the shear behavior were derived and compared between each parameter. The values of shear stiffness have a trend showing rapid increase with the increase of normal stress and joint roughness coeffident, and the average value of secant shear stiffness for all specimens is about $110.68kg/\textrm{cm}^3$ under the range of normal stress applied in this test In addition, the relationship between the length of specimen and shear stiffness is inversely correlated due to the size effect. Therefore, even the specimens with the same joint roughness coeffident show the trend of decreasing shear stiffness in case of the specimens being the longer length.

  • PDF

Development of Performance-Based Seismic Design of RC Column Retrofitted By FRP Jacket using Direct Displacement-Based Design (직접변위기반설계법에 의한 철근콘크리트 기둥의 FRP 피복보강 내진성능설계법의 개발)

  • Cho, Chang-Geun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.105-113
    • /
    • 2007
  • In the current research, an algorithm of performance-based seismic retrofit design of reinforced concrete columns using FRP jacket has been proposed. For exact prediction of the nonlinear flexural analysis or FRP composite RC members, multiaxial constitutive laws of concrete and composite materials have been presented. For seismic retrofit design, an algorithm of direct displacement-based design method (DDM) proposed by Chopra and Goel (2001) has been newly applied to determine the design thickness of FRP jacket in seismic retrofit of reinforced concrete columns. To compare with the displacement coefficient method (DCM), the DDM gives an accurate prediction of the target displacement in highly nonlinear region, since the DCM uses the elastic stiffness before reaching the yield load as the effective stiffness but the DDM uses the secant stiffness.