• Title/Summary/Keyword: direct spinning

Search Result 32, Processing Time 0.016 seconds

New Classes of LC Resonators for Magnetic Sensor Device Using a Glass-Coated Amorphous CO83.2B3.3Si5.9Mn7.6 Microwire

  • Kim, Yong-Seok;Yu, Seong-Cho;Hwang, Myung-Joo;Lee, Hee-Bok
    • Journal of Magnetics
    • /
    • v.10 no.3
    • /
    • pp.122-127
    • /
    • 2005
  • New classes of LC resonators for micro magnetic sensor device were proposed and fabricated. The first type LC resonator (Type I) consists of a small piece of microwire and two cylindrical electrodes at the end of the microwire without direct contact to its ferromagnetic core. In type I resonator the ferromagnetic core of the microwire and cylindrical electrodes act as an inductor and two capacitors respectively to form a LC circuit. The second type LC resonator (Type II) consists of a solenoidal micro-inductor with a bundle of soft magnetic microwires as a core. The solenoidal micro-inductors fabricated by MEMS technique were $500\sim1,000\;\mu{m}$ in length with $10\sim20$ turns. A capacitor is connected in parallel to the micro-inductor to form a LC circuit. A tiny glass coated $CO_{83.2}B_{3.3}Si_{5.9}Mn_{7.6}$ microwire was fabricated by a glass-coated melt spinning technique. A supergiant magneto-impedance effect was found in a type I resonator as much as 400,000% by precise tuning frequency at around 518.51 MHz. In type II resonator the changes of inductance as a function of external magnetic field in micro-inductors with properly annealed microwire cores were varied as much as 370%. The phase angle between current and voltage was also strongly dependent on the magnetic field. The drastic increments of magnetoimpedance at near the resonance frequency were observed in both types of LC resonators. Accordingly, the sudden change of the phase angle, as large as $180^{\circ}C$, evidenced the occurrence of the resonance at a given external magnetic field.

A Case Study on the Development of New Process for Treatment of Waste Waters from Ships (선박폐수 처리공정의 개발에 관한 사례)

  • Choi, Sang-Mo;Heo, In-Seok;Yang, Seok-Jun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.1
    • /
    • pp.71-78
    • /
    • 2009
  • Korea Marine Environment Management Corporation (KOEM) has waste oil facilities in 13 ports to collect and treat waste oil, bilge, etc. from ships based upon the Marine Environment Management Act of Korea and MARPOL 73/78 convention. Those facilities were designed and have been operated simply to discharge water under the level 15 ppm of oil contents. However, bad smells occurred from rotten organic matters in waste water and direct discharge of harmful substances to receiving water caused civil appeals. Therefore, KOEM tried to develop new process for treatment of oily waste water from ships, which could mitigate harmful substances, save cost, calm down civil appeals and contribute to marine environment preservation. This process consists of 3 steps to remove oil contents via gravity variation at first, $O_3$ input to contact water and organism deposition by inputting condensate deposits. Then finally upper water will be discharged, and the deposited substances in the bottom will be compressed through spinning machine to transfer to the designated contractors for treatment of wastes. This is very effective and innovative in that it could reduce 3 or 4 steps compared with existing process and mitigate not only waste oil concentration but also hard resolving materials such as colloid, ABS, phosphorus, nitrogen and bad smells. This method is expected to minimize bad smells and harmful gases, to save more than 10% of maintenance cost, and to arrange the good base for garbage treatment business dealing with waste water and bad smell.

  • PDF