• Title/Summary/Keyword: direct shear

Search Result 767, Processing Time 0.028 seconds

Estimation of Pull-out force by using modified Direct Shear Apparatus (개설된 직접전단시험기(CNS)를 이용한 보강재의 인발력 추정)

  • 유병선;이학무;장기태;한희수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06a
    • /
    • pp.145-154
    • /
    • 2003
  • When a nail pulled out in dense, granular soil, the soil in the vicinity of the nail tends to dilate, but its dilatancy results in a normal stress concentration at the soil/nail interface, thereby increasing the pull-out resistance of the inclusion. It is thought to be occurring within the resistance zone where the soil mass is at stationary state and the reinforcement are held in position by the soil, due to the friction or bond. In this paper, A series of direct shear and interface tests were conducted by using so called‘Constant Normal Stiffness Test Apparatus’which was modified and improved from the conventional direct shear box test rig. Unlikely the normal shear box test, this enables to simulate the different constraint effects of surrounding soil during shear under the conditions of constant stress and volume, constant normal stiffness. The aim of the research programme is to get better understanding of pull-out bond mechanism, thus to explore the possibility of evaluating the pull-out bond capacity of soil/reinforcement at the preliminary design stage from the laboratory test.

  • PDF

Direct shear testing of brittle material samples with non-persistent cracks

  • Haeri, Hadi;Sarfarazi, Vahab;Shemirani, Alireza Bagher;Zhu, Zheming
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.927-935
    • /
    • 2018
  • The mechanical behavior of the brittle material samples containing the internal and edge cracks are studied under direct shear tests. It is tried to investigate the effects of stress interactions and stress intensity factors at the tips of the pre-existing cracks on the failure mechanism of the bridge areas within these cracks. The direct shear tests are carried out on more than 30 various modeled samples each containing the internal cracks (S models) and edge cracks (E models). The visual inspection and a low power microscope are used to monitor the failure mechanisms of the tested samples. The cracks initiation, propagation and coalescences are being visualized in each test and the detected failure surfaces are used to study and measure the characteristics of each surface. These investigations show that as the ratio of the crack area to the total shear surface increases the shear failure mode changes to that of the tensile. When the bridge areas are fixed, the bridge areas in between the edge cracks have less strength than those of internal cracks. However, the results of this study show that for the case of internal cracks as the bridge area is increased, the strength of the material within the bridge area is decreased. It has been shown that the failure mechanism and fracture pattern of the samples depend on the bridge areas because as the bridge area decreases the interactions between the crack tip stress fields increases.

Physical and numerical modelling of the inherent variability of shear strength in soil mechanics

  • Chenari, Reza Jamshidi;Fatahi, Behzad;Ghoreishi, Malahat;Taleb, Ali
    • Geomechanics and Engineering
    • /
    • v.17 no.1
    • /
    • pp.31-45
    • /
    • 2019
  • In this study the spatial variability of soils is substantiated physically and numerically by using random field theory. Heterogeneous samples are fabricated by combining nine homogeneous soil clusters that are assumed to be elements of an adopted random field. Homogeneous soils are prepared by mixing different percentages of kaolin and bentonite at water contents equivalent to their respective liquid limits. Comprehensive characteristic laboratory tests were carried out before embarking on direct shear experiments to deduce the basic correlations and properties of nine homogeneous soil clusters that serve to reconstitute the heterogeneous samples. The tests consist of Atterberg limits, and Oedometric and unconfined compression tests. The undrained shear strength of nine soil clusters were measured by the unconfined compression test data, and then correlations were made between the water content and the strength and stiffness of soil samples with different consistency limits. The direct shear strength of heterogeneous samples of different stochastic properties was then evaluated by physical and numerical modelling using FISH code programming in finite difference software of $FLAC^{3D}$. The results of the experimental and stochastic numerical analyses were then compared. The deviation of numerical simulations from direct shear load-displacement profiles taken from different sources were discussed, potential sources of error was introduced and elaborated. This study was primarily to explain the mathematical and physical procedures of sample preparation in stochastic soil mechanics. It can be extended to different problems and applications in geotechnical engineering discipline to take in to account the variability of strength and deformation parameters.

Evaluation of Interface Shear Properties Through Static Friction Tests (정적마찰 시험을 통한 접촉전단 특성평가)

  • Chang, Yong-Chai;Lee, Seung-Eun;Seo, Ji-Woong;Bowders, John J.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.813-818
    • /
    • 2009
  • Shear properties of plastic bottle film/plastic bottle film and plastic bottle film/granitic soil which were evaluated from static friction tests. The monotonic shear experiments were performed by using an tilt table apparatus and large direct shear device. The test results showed that the friction angle of each interface and the interface depended on the amount of normal stress, the type of the interface used. Therefore, the testing method should be determined carefully by considering the type of loads and normal stress expected in the field with using the materials installed in the site.

  • PDF

A Study on Bond Strength between Fiber Sheet and Concrete for Concrete Surface Preparation and Heating Condition (콘크리트 표면처리와 가열조건에 따른 섬유쉬트와 콘크리트의 부착강도에 관한 연구)

  • Ahn, Sang-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.201-207
    • /
    • 2002
  • An advanced fiber sheet has been widely used for strengthening of the concrete structures due to its excellent properties such as high strength and light weight. Bond strength is very important in strengthening the concrete structures using an advanced fiber sheet. This research examines the bond behavior between fiber sheet and concrete, investigates the bond strength by the direct pull-out test and the tensile-shear test. To obtain the tensile-shear strength a double-face shear type bond test is conducted. The primary test variables are the types of concrete surface roughness (disk-grinding/chipping) and retrofitting methods (bonding/injection). Thirty specimens were tested to evaluate the bond strength. It is shown that the average bond strength between fiber sheet and concrete by the direct pull-out test and the tensile-shear test is $22.3{\sim}23.1kgf/cm^2$ $17.92{\sim}19.75kgf/cm^2$, respectively.

Evaluation of soil-concrete interface shear strength based on LS-SVM

  • Zhang, Chunshun;Ji, Jian;Gui, Yilin;Kodikara, Jayantha;Yang, Sheng-Qi;He, Lei
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.361-372
    • /
    • 2016
  • The soil-concrete interface shear strength, although has been extensively studied, is still difficult to predict as a result of the dependence on many factors such as normal stresses, surface roughness, particle sizes, moisture contents, dilation angles of soils, etc. In this study, a well-known rigorous statistical learning approach, namely the least squares support vector machine (LS-SVM) realized in a ubiquitous spreadsheet platform is firstly used in estimating the soil-structure interface shear strength. Instead of studying the complicated mechanism, LS-SVM enables to explore the possible link between the fundamental factors and the interface shear strengths, via a sophisticated statistic approach. As a preliminary investigation, the authors study the expansive soils that are found extensively in most countries. To reduce the complexity, three major influential factors, e.g., initial moisture contents, initial dry densities and normal stresses of soils are taken into account in developing the LS-SVM models for the soil-concrete interface shear strengths. The predicted results by LS-SVM show reasonably good agreement with experimental data from direct shear tests.

The Effect of Reinforcing Soil Shear Strength by a Root System Developed from Direct Sticking of Salix gracilistyla Miq (삽목에 의한 갯버들 근계의 토양전단강도 보강효과)

  • 이춘석;임승빈
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.5
    • /
    • pp.1-10
    • /
    • 2003
  • The purpose of this study was to verify the shore margin protection effect of a root system developed from direct sticking of Salix gracilistyla Miq., focusing on the reinforcement of soil shear strength. The materials were 20cm long sticks whose average diameter and weight were 7.52mm and 14.58g respectively, and sandy loam(Sand 60.36%, Silt 28%, Clay 11.64%), whose maximum dry weight(${\gamma}$$_{dmax}$) was 1.59gf/㎤ at the water ratio( $W_{opt}$) 13.8%. The direct shearing test(KS F 2343) was applied to cylindric columms(diameter 132mm) of pure soil and two years old root reinforced soil. At each condition of vertical stress, 10N/$ extrm{cm}^2$, 14.41N/$\textrm{cm}^2$ and 18.82 N/$\textrm{cm}^2$, five soil+root columns were sheared. After shear tests, the root area ratio and soil moisture on the shear plane were measured. The results of this research were as follows: 1. The average of root area ratio was 1.86% and the soil moisture 14.67%. 2. Two years old root system was found to increase the soil shear strength of pure soil in terms of Cohesion(C) and Inner friction Angle($\phi$) as follows. 3. The relationship between root area ratio and the increased shear strength can be presented with the following equation, $\Delta$S ≒ 0.33ㆍ TrㆍAs/A $\Delta$S : Increased Shear Strength Tr : Average Tension Strength of Root, Ar/A : Root Area Ratioioage Tension Strength of Root, Ar/A : Root Area Ratio

Friction Characteristics on Interface Between Reinforcement and Sand by Direct Shear Test Methods (전단시험방법에 따른 토목섬유/모래 접촉면에서의 마찰특성)

  • Ju, Jae-Woo;Park, Jong-Beom;Chang, Yong-Chai
    • Journal of the Korean Geosynthetics Society
    • /
    • v.2 no.1
    • /
    • pp.39-45
    • /
    • 2003
  • The most important part in the earth reinforcement is the interface between soil and the reinforcement. Shear strength and shear behavior in this interface make a great role relating to the reinforcement effect. This paper presents 2 kinds of direct shear test methods. one is the strain free shear test, called 'free method', that is performed by the free condition of allowing tensile strain. The other is the strain fix shear test, called 'fixed method', that is performed by the fixed condition of not allowing tensile strain. Two reinforcements were used such as nonwoven geotextile and geogrid. That is, interfaces are composed of geogrid/sand and geotextile/sand. From the test results it shows us that the fixed method had a greater friction angle and a smaller peak shear strain than those of the free method. Residual stress of the fixed method was bigger than that of the free method but the residual stress ratio was vice versa.

  • PDF

Relationship between Rainfall Intensity and Shear Strength of Slope (사면의 전단강도와 강우강도와의 상관관계)

  • Lee, Jungsik;Han, Heuisoo;Jang, Jinuk;Yang, Namyong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.2
    • /
    • pp.13-21
    • /
    • 2010
  • The unsaturated slope usually is stable for a long time, but fails during heavy rainfall. And the factors of the rainfall intensity exhibit significant roles because the water content and the shear stress developed along the potential failure surface will be changed by the rainfall intensity. The objective of the study presented in this paper is to analyze the relationship between rainfall intensity and shear stress of the soil slopes by applying the laboratory slope model apparatus and undrained direct shear test with rainfall intensity controlled. The soil sample was taken from the field slope of Youngdong, and particle size analysis was done. To look over the relationship between rainfall intensity and shear strength of slope, the three-dimensional relationships among shear strength, normal stress and water content of the slope soil samples are examined; those are based on the data from the TDR sensor and undrained direct shear test.

Analysis of Shear Resistance Characteristics in Pile-Soil Interface using Large-Scale Direct Shear Test (대형직접전단시험을 통한 말뚝과 지반 경계면의 전단특성 분석)

  • You, Seung-Kyong;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.61-69
    • /
    • 2022
  • In this study, a large-scale direct shear test was performed to evaluate the shear characteristics of the pile-soil interface according to the fines content and confining pressure conditions as a reasonable evaluation method of the pullout resistance performance of pile considering the soil conditions. It was found that the shear stress was greatly generated under the conditions of high normal stress and low fines content. In addition, the maximum shear stress was found to be rather large under the conditions of the same normal stress and fines content, when pile surface had high roughness. The internal friction angle decreased at the pile-soil interface, when the fines content in the ground increased. On the other hand, the cohesion decreased under the condition of high fines content. And the internal friction angle and cohesion were large regardless of the fines content in the model ground, when the roughness of the pile surface was high.