• Title/Summary/Keyword: direct methanol fuel cell

Search Result 224, Processing Time 0.033 seconds

Influence of defective sites in Pt/C catalysts on the anode of direct methanol fuel cell and their role in CO poisoning: a first-principles study

  • Kwon, Soonchul;Lee, Seung Geol
    • Carbon letters
    • /
    • v.16 no.3
    • /
    • pp.198-202
    • /
    • 2015
  • Carbon-supported Pt catalyst systems containing defect adsorption sites on the anode of direct methanol fuel cells were investigated, to elucidate the mechanisms of H2 dissociation and carbon monoxide (CO) poisoning. Density functional theory calculations were carried out to determine the effect of defect sites located neighboring to or distant from the Pt catalyst on H2 and CO adsorption properties, based on electronic properties such as adsorption energy and electronic band gap. Interestingly, the presence of neighboring defect sites led to a reduction of H2 dissociation and CO poisoning due to atomic Pt filling the defect sites. At distant sites, H2 dissociation was active on Pt, but CO filled the defect sites to form carbon π-π bonds, thus enhancing the oxidation of the carbon surface. It should be noted that defect sites can cause CO poisoning, thereby deactivating the anode gradually.

Performance of multi-cell stack for direct methanol fuel cells (직접메탄올 연료전지용 다층스택의 성능특성)

  • Lee, Chang-Hyeong;Jung, Doo-Hwan;Kim, Chang-Soo;Shin, Dong-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1870-1872
    • /
    • 1999
  • Performance of 20-cell stack for direct methanol fuel cell (DMFC) was tested at constant temperature. Electrode evaluation used to the stack was tested by the performance of a single cell. A new composite electrode prepared from active carbon cloth and high porous active carbon was developed for hydrophilic layer of the cell. Characteristics of a single cell using the composite electrode showed the current density of $500mA/cm^2$ at the cell voltage of 0.4V at $120^{\circ}C$. For the operating of 20 days. the cell voltage at constant cell current densty of $100mA/cm^2$ was slightly reduced from 0.62V to 0.53V with the cell voltage decay rate of 14.5%. Power of 20-cell stack at 5.3V, $100^{\circ}C$ was about 180W.

  • PDF

Characteristics of the Catalysts Using Activated Carbon Nanofibers with KOH as the Support of Anode Catalyst for Direct Methanol Fuel Cell

  • Jung, Min-Kyung;Kim, Sang-Kyung;Jung, Doo-Hwan;Peck, Dong-Hyun;Shin, Jung-Hee;Shul, Yong-Gun;Yoon, Seong-Ho
    • Carbon letters
    • /
    • v.8 no.1
    • /
    • pp.37-42
    • /
    • 2007
  • Carbon nanofiber (CNF) grown catalytically was chemically activated with KOH to attain structural change of CNF. The structural changes of CNF through KOH activation were investigated by using BET and SEM. From the results of BET, it was found that KOH activation was effective to develop particular sizes of pores on the CNF surface, increasing the surface area of CNF. Activated CNF was applied as an anode catalyst support of fuel cell. The effects of different activation conditions including the activation temperature and the activation time on the specific surface area of the CNF activated with KOH were investigated to obtain appropriate structure as a catalyst support. The 60 wt% Pt-Ru catalyst prepared was observed by using TEM and XRD.

Nafion Composite Membranes Containing Rod-Shaped Polyrotaxanes for Direct Methanol Fuel Cells

  • Cho Hyun-Dong;Won Jong-Ok;Ha Heung-Yong;Kang Yong-Soo
    • Macromolecular Research
    • /
    • v.14 no.2
    • /
    • pp.214-219
    • /
    • 2006
  • Cast Nafion-based composite membranes containing different amounts of organic, nanorod-shaped polyrotaxane were prepared and characterized, with the aim of improving the properties of polymer electrolyte membranes for direct methanol fuel cell applications. Polyrotaxane was prepared using the inclusion-complex reaction between ${\alpha}$-cyclodextrin and poly(ethylene glycol) (PEG) of different molecular weights. The addition of polyrotaxane to Nafion changed the morphology and reduced the crystallinity. The conductivity of the composite membranes increased with increasing polyrotaxane content up to 5 wt%, but then decreased at higher polyrotaxane contents. Well-dispersed, organic polyrotaxane inside the membrane can provide a tortuous path for the transport of methanol, as the methanol permeability depends on the aspect ratio of polyrotaxane, which is controlled by the molecular weight of PEG. All of the Nafion-based, polyrotaxane composite membranes showed a higher selectivity parameter than the commercial Nafion films did.

The Study for Characteristic of Direct Methanol Fuel Cell in Ambient Temperature (상온 상태에서 직접 메탄올 연료전지의 특성 연구)

  • Yun, Hyo-Jin;Kim, Jeong-Ju;Kim, Dong-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.5
    • /
    • pp.955-961
    • /
    • 2009
  • Present, a portable battery have problem that the volume increases according to capacity Increase. Direct Methanol Fuel Cell is alternative by solution plan of this problem. In this paper, the characteristics of DMFC are analyzed by change in concentration and discharge of fuel in natural convection and room temperature condition. According to the analysis result, polarization by delay of diffusion velocity of hydrogen ion appeared in methanol of low concentration. And if have a lot of supplies of methanol, generation power declines by electric cell cooling effect.

Development of portable DMFC systems (휴대용 직접 메탄올 연료전지 시스템 개발)

  • Moon, Go-Young;Kim, Hyuk;Yoo, Hwang-Chan;Noh, Tae-Geun;Lee, Won-Ho
    • New & Renewable Energy
    • /
    • v.3 no.1 s.9
    • /
    • pp.46-53
    • /
    • 2007
  • Direct Methanol Fuel Cell, DMFC is a potential power source for portable IT application. DMFC works at low temperature ($<100^{\circ}C$) without fuel processing. Methanol has high energy density, fuel economy, and easiness to handle. This paper focuses high efficient catalyst to increase utilization in the electrode, new membrane reducing methanol crossover, new material parts, and optimization of system integration. Lightweight and small-sized DMFC based on new materials, efficient stack, and improved system control will be applied to the 50W prototype system for the notebook computer.

  • PDF

Development and Charge-Discharge Performance Analysis of Direct Methanol Fuel Cell Power Pack for Mobile Phones (휴대폰용 연료전지 전원공급 시스템 개발 및 충방전 특성 연구)

  • Han, Jae-Sung;Kim, Young-Shol;Park, Eun-Seong
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.1
    • /
    • pp.27-29
    • /
    • 2002
  • We report a fuel cell power supply unit for mobile phone which operates at room temperature and ambient pressure using liquid methanol and air. The unit consists of a direct methanol fuel cell (DMFC) and a back-up battery connected parallely to the fuel cell. DMFC supplies half of the required power and the back-up battery supplies the other half during talk mode. In standby mode, DMFC covers $100\%$ of the required power and charges the back-up battery as well, Eight unit cells, each having $9 cm^2$ of active area, were connected in series in order to raise the output volotage to $2.5\~3.9V$, which is typical for most mobile phones.