• 제목/요약/키워드: direct methanol fuel cell

검색결과 224건 처리시간 0.027초

액티브형 직접메탄올연료전지 시스템의 메탄올 농도 변동이 성능에 미치는 영향성에 대한 수치적 연구 (A Numerical Investigation of Effects of Methanol Concentration Fluctuation in Active-type Direct Methanol Fuel Cell (DMFC) Systems)

  • 곽건희;고요한;이수원;이진우;백동현;정두환;주현철
    • 한국수소및신에너지학회논문집
    • /
    • 제24권6호
    • /
    • pp.495-509
    • /
    • 2013
  • In this study, we develop a one-dimensional (1-D), two-phase, transient-thermal DMFC model to investigate the effect of methanol concentration fluctuation that usually occurs in active-type direct methanol fuel cell (DMFC) systems. 1-D transient simulations are conducted and time-dependent behaviors of DMFCs are analyzed under various DMFC operating conditions such as anode/cathode stoichiometry, cell temperature, and cathode inlet humidification. The simulation results indicate that the effect of methanol concentration fluctuation on DMFC performance can be mitigated by proper control of anode/cathode stoichiometry, providing a guideline to optimize operating conditions of active DMFC systems.

Preparation and Comparative Test of Polypyrrole Electrodes for Direct Methanol Fuel Cell

  • Park, Jae-Chan;Kim, Jeong-Soo;Jung, Doo-Hwan
    • Macromolecular Research
    • /
    • 제10권4호
    • /
    • pp.181-186
    • /
    • 2002
  • The displacement of carbon black to polypyrrole as a catalyst supporter in the fuel electrode of a direct methanol fuel cell was investigated. Polypyrrole was obtained as a black powder by the chemical polymerization of pyrrole with three different oxidants. The synthesized polypyrroles were pasted on carbon paper and transformed to the fuel electrodes with electrochemically deposited platinum. The prepared fuel electrode was assembled and mounted in a unit cell using a membrane and cathodic electrode film. In comparison with the carbon black fuel electrode, the performance of the unit cell was analyzed in relation to the state of the catalyst, the type of oxidant, and the morphology of the polypyrrole powder.

Quantification of Methanol Concentration in the Polymer Electrolyte Membrane of Direct Methanol Fuel Cell by Solid-state NMR

  • Kim, Seong-Soo;Paik, Youn-Kee;Kim, Sun-Ha;Han, Oc-Hee
    • 한국자기공명학회논문지
    • /
    • 제12권2호
    • /
    • pp.96-102
    • /
    • 2008
  • Direct quantification of methanol in polymer electrolyte membrane (PEM) by solid-state nuclear magnetic resonance (NMR) spectroscopy was studied and the methanol concentrations in PEM produced by crossover and diffusion were compared. The error range of the quantification was not smaller than ${\pm}15%$ and the amount of the methanol crossed over in our direct methanol fuel cells (DMFCs) was less than the methanol diffused to PEM. The methanol concentration in the PEM of the DMFC operated at different current densities were equivalent.

직접메탄올연료전지에서 메탄올 크로스오버에 미치는 인자 연구 (Investigation of Factors Influencing Methanol Crossover in Direct Methanol Fuel Cell)

  • 현민수;김상경;임성엽;이병록;백동현;정두환
    • 전기화학회지
    • /
    • 제11권1호
    • /
    • pp.6-10
    • /
    • 2008
  • 직접메탄올연료전지의 운전 변수에 따른 메탄올 크로스오버를 메탄올 농도센서를 이용하여 정량적으로 측정하였으며 실제 셀 운전 시 메탄올크로스오버 저감의 측면에서 유리한 운전조건을 분석하였다. 메탄올 농도, 전극 양단의 압력차, 전류의 크기, 온도, stoichiometry등을 변화시켜 diffusion, convection, electro-osmosis의 메커니즘별 기여도와 실제 전지 운전 조건의 영향을 함께 분석하였다. 이상의 세 가지 메커니즘 중에서 농도 차이에 의한 diffusion이 가장 큰 영향을 미쳤으며 electro-osmosis에 의한 영향은 고농도에서만 관찰할 수 있었다.

수동급기 직접 메탄올 연료전지의 유로에 따른 성능 평가 (Performance evaluation by flow channel effect for a passive air-breathing Direct Methanol Fuel Cell)

  • 장익황;하승범;차석원
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.45-48
    • /
    • 2008
  • This paper presents a passive air-breathing direct methanol fuel cell (DMFC) which has been designed and tested. The single cell is fuelled by methanol vapor that is supplied through flow channel from a methanol reservoir at the anode, and the oxygen is supplied via natural air-breathing at the cathode. The methods for supplying the methanol vapor to the single cell were parallel channel and chamber. This research investigates various methods to identify the effects of using flow channels for providing the methanol vapor at the anode, and the opening ratio between the inlet and outlet ports for the methanol flow at the anode. The best flow channel condition for passive DMFC was a chamber, and the opening ratio was 0.8. Under these conditions, the peak power was 10.2mW/$cm^2$ at room temperature and ambient pressure. The key issues for the Passive DMFCs for using methanol vapor are that sufficient methanol needs to be supplied using a large as possible opening ratio. However, it is shown that the performance of the passive DMFC, which has a channel at the anode,is low due to the low differential pressure and insufficient methanol supply rate.

  • PDF

직접 메탄올 연료 전지의 성능에 대한 메탄올 농도, 풍속 및 스택 온도의 영향 (Effects of the Methanol Concentration, Wind Velocity and Stack Temperature on the performance of Direct Methanol Fuel Cell)

  • 김용하;김석일
    • 항공우주시스템공학회지
    • /
    • 제1권2호
    • /
    • pp.21-26
    • /
    • 2007
  • DMFC(Direct Methanol Fuel Cell) has been considered as an attractive option to produce electric power in many application. In this study, in order to estimate the effects of the methanol concentration, wind velocity and temperature on the performance of DMFC, a physical prototype of DMFC was designed and manufactured, and the stack voltage of DMFC was measured during the operation of DMFC. Expecially, the experimental results showed that a low stack temperature, a low wind velocity and an excess methanol concentration lead to the increase of the time to reach the maximum stack voltage.

  • PDF

직접메탄올 연료전지내 전달현상에 대한 전산 모사 (Simulation for transport phenomena of DMFC (Direct Methanol Fuel Cell))

  • 임현숙;김여진;홍원희
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.490-493
    • /
    • 2006
  • The results of simulation of direct methane fuel cell fed with liquid-state methanol feed are shown. This numerical process is based on mass and current conservation equations. The results showed that over low current density $(<200mA/cm^2)$ IV polarization curve was well-presented compared to experimental result. Methanol fed from anodic side moved into cathodic side through electrolyte membrane and the pressure near cathode electrode increased according to amount of methanol crossover and production of water. Besides change of overpotential on each el electrode were checked by x-axis.

  • PDF

Characteristics of Pt-Ru Catalyst Supported on Activated Carbon for Direct Methanol Fuel Cell

  • Jung, Doo-Hwan;Jung, Jae-Hoon;Hong, Seong-Hwa;Peck, Dong-Hyun;Shin, Dong-Ryul;Kim, Eui-sik
    • Carbon letters
    • /
    • 제4권3호
    • /
    • pp.121-125
    • /
    • 2003
  • The Pt-Ru/Carbon as an anode catalyst supported on the commercial activated carbon (AC) having high surface area and micropore was characterized for application of Direct Methanol Fuel Cell (DMFC). The Pt-Ru/AC anode catalyst used in this experiment showed the performance of $600\;mA/cm^2$ current density at 0.3 V. The borohydride reduction process using $NaBH_4$, denoted as a process A, showed much higher current and power densities than process B prepared by changing the reduction and washing process of process A. The particle sizes are strongly affected by the reduction process than the specific surface area of raw active carbon and the sizes are almost constant when the specific surface area of carbon are over than the $1200\;m^2/g$. Smaller particle size of catalyst and more narrow intercrystalite distance increased the performance of DMFC.

  • PDF

직접메탄올 연료전지의 운전 조건이 성능에 미치는 영향 (Effects of the Operating Conditions on the Performance of Direct Methanol Fuel Cells)

  • 한창화;김남훈;이중희
    • 한국수소및신에너지학회논문집
    • /
    • 제22권3호
    • /
    • pp.292-298
    • /
    • 2011
  • This study examines the effects of the ambient temperature (AT), methanol feeding temperature (MFT), methanol concentration (MC) and methanol flow rate (MFR) on the performance and cell temperature (CT) of a 5-stacked direct methanol fuel cell (DMFC). The AT, MFT, MC, and MFR are varied from $-10^{\circ}C$ to $+40^{\circ}C$, $50^{\circ}C$ to $90^{\circ}C$, 0.5M to 3.0M and 11.7 mL $min^{-1}$ to 46.8 mL $min^{-1}$, respectively. The performance of the DMFC under various operating conditions is analyzed from the I-V polarization curve, and the methanol crossover is estimated by gas chromatography (GC). The performance of the DMFC improves significantly with increasing AT. The open circuit voltage (OCV) decreases with increasing MC due to the enhanced likelihood of methanol crossover. The cell performance is improved significantly when the MFR is increased from 11.7 mL $min^{-1}$ to 28.08 mL $min^{-1}$. The change in cell performance is marginal with further increases in MFR. The CT increases significantly with increasing AT. The effect of the MFT and MFR is moderate, and the effect of MC is marginal on the CT of the DMFC.

Micro Fuel Cells for the Portable Applications

  • Moon, Go-Young;Lee, Won-Ho
    • Korean Membrane Journal
    • /
    • 제5권1호
    • /
    • pp.1-9
    • /
    • 2003
  • Due to the increasing intelligence, the increasing connectivity, and always-on characteristics energy needs for the portable electronics cannot be managed by the state-of-art battery technology. Micro fuel cell fuelled by aqueous methanol is gaining lots of interest from the new energy storage developers since it has the potential to offer the longer operation time to the portable electronic devices. Although the technical barriers to the commercialization exit, it is expected that the micro fuel cell technology bring huge benefits to the current energy storage market once it matures. In the article, benefits, challenges and market players of the direct methanol fuel cell arena is briefly reviewed.