• Title/Summary/Keyword: direct integration methods

Search Result 100, Processing Time 0.024 seconds

Neural network based direct torque control for doubly fed induction generator fed wind energy systems

  • Aftab Ahmed Ansari;Giribabu Dyanamina
    • Advances in Computational Design
    • /
    • v.8 no.3
    • /
    • pp.237-253
    • /
    • 2023
  • Torque ripple content and variable switching frequency operation of conventional direct torque control (DTC) are reduced by the integration of space vector modulation (SVM) into DTC. Integration of space vector modulation to conventional direct torque control known as SVM-DTC. It had been more frequently used method in renewable energy and machine drive systems. In this paper, SVM-DTC is used to control the rotor side converter (RSC) of a wind driven doubly-fed induction generator (DFIG) because of its advantages such as reduction of torque ripples and constant switching frequency operation. However, flux and torque ripples are still dominant due to distorted current waveforms at different operations of the wind turbine. Therefore, to smoothen the torque profile a Neural Network Controller (NNC) based SVM-DTC has been proposed by replacing the PI controller in the speed control loop of the wind turbine controller. Also, stability analysis and simulation study of DFIG using process reaction curve method (RRCM) are presented. Validation of simulation study in MATLAB/SIMULINK environment of proposed wind driven DFIG system has been performed by laboratory developed prototype model. The proposed NNC based SVM-DTC yields superior torque response and ripple reduction compared to other methods.

A fourth order finite difference method applied to elastodynamics: Finite element and boundary element formulations

  • Souza, L.A.;Carrer, J.A.M.;Martins, C.J.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.6
    • /
    • pp.735-749
    • /
    • 2004
  • This work presents a direct integration scheme, based on a fourth order finite difference approach, for elastodynamics. The proposed scheme was chosen as an alternative for attenuating the errors due to the use of the central difference method, mainly when the time-step length approaches the critical time-step. In addition to eliminating the spurious numerical oscillations, the fourth order finite difference scheme keeps the advantages of the central difference method: reduced computer storage and no requirement of factorisation of the effective stiffness matrix in the step-by-step solution. A study concerning the stability of the fourth order finite difference scheme is presented. The Finite Element Method and the Boundary Element Method are employed to solve elastodynamic problems. In order to verify the accuracy of the proposed scheme, two examples are presented and discussed at the end of this work.

Direct integration method for stochastic finite element analysis of nonlinear dynamic response

  • Zhang, S.W.;Ellingwood, B.;Corotis, R.;Zhang, Jun
    • Structural Engineering and Mechanics
    • /
    • v.3 no.3
    • /
    • pp.273-287
    • /
    • 1995
  • Stochastic response of systems to random excitation can be estimated by direct integration methods in the time domain such as the stochastic central difference method (SCDM). In this paper, the SCDM is applied to compute the variance and covariance in response of linear and nonlinear structures subjected to random excitation. The accuracy of the SCDM is assessed using two-DOF systems with both deterministic and random material properties excited by white noise. For the former case, closed-form solutions can be obtained. Numerical results also are presented for a simply supported geometrically nonlinear beam. The stiffness of this beam is modeled as a random field, and the beam is idealized by the stochastic finite element method. A perturbation technique is applied to formulate the equations of motion of the system, and the dynamic structural response statistics are obtained in a time domain analysis. The effect of variations in structural parameters and the numerical stability of the SCDM also are examined.

Robustness of Bimodal Speech Recognition on Degradation of Lip Parameter Estimation Performance (음성인식에서 입술 파라미터 열화에 따른 견인성 연구)

  • Kim, Jin-Young;Min, So-Hee;Choi, Seung-Ho
    • Speech Sciences
    • /
    • v.10 no.2
    • /
    • pp.27-33
    • /
    • 2003
  • Bimodal speech recognition based on lip reading has been studied as a representative method of speech recognition under noisy environments. There are three integration methods of speech and lip modalities as like direct identification, separate identification and dominant recording. In this paper we evaluate the robustness of lip reading methods under the assumption that lip parameters are estimated with errors. We show that the dominant recording approach is more robust than other methods through lip reading experiments.

  • PDF

A Study on the Techniques to Evaluate Carbody Accelerations after a Train Collision (충돌 후 열차의 차체 가속도 평가 기법 연구)

  • Kim, Joon-Woo;Koo, Jeong-Seo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.5
    • /
    • pp.477-485
    • /
    • 2010
  • In this study, we suggested several approaches to evaluate the collision acceleration of a carbody under the article 16 of the Korean rolling stock safety regulations. There are various methods to evaluate the rigid body accelerations such as the displacement comparison method by double integration of filtered acceleration data, the velocity comparison method by direct integration of filtered acceleration data, and the analysis method of a velocity-time curve. We compared these methods one another using the 1D dynamic simulation model of Korean high-speed EMU composed of nonlinear springs or bars, dampers, and masses. From the simulation results, the velocity-time curve analysis method and the displacement comparison method are recommended to filter high frequency oscillations and evaluate the maximum and average accelerations of a carbody after a train collision.

Direct Geo-referencing for Laser Mapping System

  • Kim, Seong-Baek;Lee, Seung-yong;Kim, Min-Soo
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.423-427
    • /
    • 2002
  • Contrary to the traditional text-based information, 4S(GIS,GNSS,SIIS,ITS) information can contribute to the citizen's welfare in upcoming era. Recently, GSIS(Geo-Spatial Information System) has been applied and stressed out in various fields. As analyzed the data from GSIS arena, the position information of objects and targets is crucial and critical. Therefore, several methods of getting and knowing position are proposed and developed. From this perspective, Position collection and processing are the heart of 4S technology. We develop 4S-Van that enables real-time acquisition of position and attribute information and accurate image data in remote site. In this study, the configuration of 4S-Van equipped with GPS, INS, CCD and eye-safe laser scanner is shown and the merits of DGPS/INS integration approach for geo-referencing is briefly discussed. The algorithm of DGPS/INS integration fur determination of six parameters of motion is eccential in the 4S-Van to avoid or simplify the complicated computation such as photogrammetric triangulation. 4S-Van has the application of Laser-Mobile Mapping System for three-dimensional data acquisition that merges the texture information from CCD camera. The technique is also applied in the fields of virtual reality, car navigation, computer games, planning and management, city transportation, mobile communication, etc.

  • PDF

Survey on the LIC based flow visualization (LIC 기반의 유동 가시화 기법에 대한 조사 연구)

  • Lee, Joong-Youn
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.530-534
    • /
    • 2007
  • Flow visualization is one of visualization techniques and it means a visual expression of vector data using 2D or 3D graphics. It aims for human to easily understand a special feature of the vector data. Flow visualization can be classified into various criterions such as visualization technique, data dimension, type of the flow, and so on. Visualization technique can be categorized into direct method, integration method and derived data based method. Data dimension can be divided into 2D, 2.5D and 3D. Type of flow data may be classified into steady and unsteady. In this paper, various LIC based flow visualization methods will be introduced which is one of representative integration based techniques. Those methods will be categorized with more detailed criterions such as dimension and type of flows.

  • PDF

Direct Simulations of Aerodynamic Sounds by the Finite Difference and Finite Volume Lattice Boltzmann Methods

  • Tsutahara, Michihisa;Tamura, Akinori;Motizuki, Kazumasa;Kondo, Takamasa
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.22-25
    • /
    • 2006
  • Direct simulations of aerodynamic sound, especially sound emitted by rapidly rotating elliptic cylinder by the finite difference lattice Boltzmann method (FDLBM). Effect of pile-fabrics for noise reduction is also studied by the finite volume LBM (FVLBM) using an unstructured grid. Second order time integration and third order upwind scheme are shown to be enough for these simulations. Sound sources are detected to be doublets for both cases. For the elliptic cylinder, the doublet is generated in the interaction between the vortex and the edge. For the circular cylinders, they are generated synchronizing with the Karman vortex street, and it is also shown that the pile-fabrics covering the surface of the cylinder reduces the strength of the source.

  • PDF

Time delay study for semi-active control of coupled adjacent structures using MR damper

  • Katebi, Javad;Zadeh, Samira Mohammady
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.1127-1143
    • /
    • 2016
  • The pounding phenomenon in adjacent structures happens in severing earthquakes that can cause great damages. Connecting neighboring structures with active and semi-active control devices is an effective method to avoid mutual colliding between neighboring buildings. One of the most important issues in control systems is applying online control force. There will be a time delay if the prose of producing control force does not perform on time. This paper proposed a time-delay compensation method in coupled structures control, with semi-active Magnetorheological (MR) damper. This method based on Newmark's integration is adopted to mitigate the time-delay effect. In this study, Lyapunov's direct approach is employed to compute demanded voltage for MR dampers. Using Lyapunov's direct algorithm guarantees the system stability to design a controller based on feedback. Because of the strong nonlinearity of MR dampers, the equation of motion of coupled structures becomes an involved equation, and it is impossible to solve it with the common time step methods. In present paper modified Newmark-Beta integration based on the instantaneous optimal control algorithm, used to solve the involved equation. In this method, the response of a coupled system estimated base on optimal control force. Two MDOF structures with different degrees of freedom are finally considered as a numeric example. The numerical results show, the Newmark compensation is an efficient method to decrease the negative effect of time delay in coupled systems; furthermore, instantaneous optimal control algorithm can estimate the response of structures suitable.

A Study on the Impact of Real Exchange Rate Volatility of RMB on China's Foreign Direct Investment to Japan

  • He, Yugang
    • East Asian Journal of Business Economics (EAJBE)
    • /
    • v.6 no.3
    • /
    • pp.24-36
    • /
    • 2018
  • Purpose - From establishing China-Japan diplomatic relations in 1972, the relations between two states has improved a lot, from which makes the government and the people reap much benefit. Owing to this reason, this paper aims at exploiting the impact of exchange rate volatility of RMB on China's foreign direct investment to Japan. Research design and methodology - The quarterly time series data from 2003 to 2016 will be employed to conduct an empirical analysis under the vector error correction model. Meanwhile, a menu of estimated methods such the Johansen co-integration test and the Granger Causality test will be also used to explore the impact of exchange rate volatility of RMB on China's foreign direct investment to Japan. Results - The empirical analysis results exhibit that the real exchange rate has a positive effect on China's foreign direct investment to Japan in the long run. Conversely, the real exchange rate volatility of RMB, the trade openness and the real GDP have a negative effect on China's foreign direct investment to Japan in the long run. However, in the short run, the China's foreign direct investment to Japan, the real exchange rate, the trade openness and the real GDP in period have a negative effect on China's foreign direct investment to Japan in period. Oppositely, the real exchange rate volatility of RMB in period has a positive effect on China's foreign direct investment to Japan in period. Conclusions - From the empirical evidences in this paper provided, it can be concluded that an increase in the exchange rate volatility of RMB can result in a decrease in the China's foreign direct investment to Japan in the long run. However, an increase in the exchange rate volatility of RMB can lead to an increase in the China's foreign direct investment to Japan in the short run. Therefore, the China's government should have a best control of the real exchange rate volatility of RMB so as to improve China's foreign direct investment to Japan.