• Title/Summary/Keyword: direct drive motor

Search Result 325, Processing Time 0.026 seconds

Design and Analysis of AFPM Coreless Motor for Electric Scooter

  • Kim, Chul-Ho;Oh, Chul-Soo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.2
    • /
    • pp.90-96
    • /
    • 2003
  • This paper deals with the design and the characteristic analysis of a coreless axial flux permanent magnet (AFPM) motor. Because a direct-drive wheel motor is easily derived from it, the AFPM motor is very suitable for application in an electric scooter. Compared to a conventional motor of the same size and weight, the AFPM motor is proven to have more power and torque per unit weight. In this paper, an AFPM coreless motor with a double-sided rotor disk equipped with Nd-Fe-B rare earth magnets is designed and a prototype of the motor is manufactured, which will be properly applied for the low-speed, and high-torque direct drive required for the electric scooter. The manufactured prototype of the motor has a rating of 300W, 510rpm, 5.6Nm, and 85% efficiency.

The Development of a super high speed motor driving system for the direct drive type turbo compressor (직접 구동방식의 터보 압축기를 위한 초고속 전동기 구동 시스템 개발)

  • 권정혁;변지섭;최중경
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.219-222
    • /
    • 2002
  • There are screw, reciprocating type turbo compressor by structure in an air compressor which is essential equipment on the industrial spot. Recently, the application range of a turbo compressor tend to be wide gradually. And this type of compressor needs high speed rotation of impeller in structure so high ratio gearbox and conventional induction motor driving required. This mechanical system have results of increased moment of inertia and mechanical friction loss. Recent studies of modern turbo compressor have been applied to developing super high speed BLDC motor and driver which remove gearbox that make its size small and mechanical friction loss minimum. To accomodate this tendency, we tried to develope a super high speed motor drive system for 150Hp, 70,000rpm direct drive Turbo compressor using DSP(Digital Signal Processor) and SVPWM(Space Vector Modulation PWM) technique. The results of this specific application show that super high speed driver and controller could be implemented well with digital electronics.

  • PDF

A High Efficiency Direct Instantaneous Torque Control of SRM based on the Nonlinear Model (비선형 모델기반 SRM의 고효율 직접 순시토크 제어)

  • An, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1047-1054
    • /
    • 2007
  • This paper presents a high efficiency direct instantaneous torque control (DITC) of Switched Reluctance Motor(SRM) based on the nonlinear model. The DITC method can reduce the high inherent torque ripple of SRM drive system, but drive efficiency is somewhat low due to the high current and switching loss during commutations. In order to reduce a torque ripple, a fast torque reference trajectory is selected at every instantaneous rotor position. Based on the nonlinear model of SRM, the developing torque by one phase is fixed and the other phase is regulated for minimum switchings of phase switch and variation of torque. The switching during commutation can be reduced and fast commutation can be obtained in the proposed method. As a result, drive efficiency could be improved as well as torque ripple reduction. The validity of proposed method is verified by computer simulations and comparative experiments.

Design of a Hub BLDC Motor Vector Control System for Patrol vehicle driving (경계형 차량 구동용 허브 BLDC 전동기 벡터제어 시스템 설계)

  • Park, Won-Seok;Son, Min-Ho;Lee, Min-Woo;Choi, Jung-keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.380-383
    • /
    • 2014
  • Hub BLDC (Brushless Direct Current) motor is a multi-pole outer rotor-type high-efficiency electric motors and the Direct Drive Motor having permanent magnet rotor to drive shaft of the wheel, also called wheel-in motor. In this study, we design a speed controller with vector control technique using the dsPIC30f2010 16 bit micro-controller to drive Hub BLDC motor. Especially, we propose vector control method which reduce complex operation time, and design directly MOSFET inverter directly which gain high economics.

  • PDF

A Study on a Control Method for Small BLDC Motor Sensorless Drive with the Single Phase BEMF and the Neutral Point (소형 BLDC 전동기 센서리스 드라이브의 단상 역기전력과 중성점을 이용한 제어기법 연구)

  • Jo, June-Woo;Hwang, Don-Ha;Hwang, Young-Gi;Jung, Tae-Uk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.1-7
    • /
    • 2014
  • Brushless Direct Current(BLDC) Motor is essential to measure a rotor position because of that this motor type needs to synchronize the rotor's position and changeover phase current instead of a brush and commutator used on the existing dc motor. Recently, many researches have studied on sensorless control drive for BLDC motor. The conventional control methods are a compensation value dq, Kalman filter, Fuzzy logic, Neurons neural network, and the like. These methods has difficulties of detecting BEMF accurately at low speed because of low BEMF voltage and switching noise. And also, the operation is long and complex. So, it is required a high-performance microprocessor. Therefore, it is not suitable for a small BLDC motor sensorless drive. This paper presents control methods suitable for economic small BLDC motor sensorless drive which are an improved design of the BEMF detection circuit, simplifying a complex algorithm and computation time reduction. The improved motor sensorless drive is verified stability and validity through being designed, manufactured and analyzed.

AC-DC Zeta Converter for Power Quality Improvement in Direct Torque Controlled PMSM Drive

  • Singh Bhim;Singh B.P.;Dwivedi Sanjeet
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.146-162
    • /
    • 2006
  • This paper deals with the analysis, design and implementation of an AC-DC Zeta converter in discontinuous current mode (DCM) of operation used for power quality improvement at AC mains in direct torque controlled (DTC) permanent magnet synchronous motor (PMSM) drives. The designed Zeta converter feeds a direct torque controlled PMSM drive system. Modeling and simulation is carried out in a standard PSIM software environment. Test results are obtained on the developed prototype Zeta converter using DSP ADMC401. The results obtained demonstrate the effectiveness of the Zeta converter in improving power quality at AC mains in the PMSM drive system.

A Hybrid DTC-DSC Drive for High Performance Induction Motor Control

  • Jidin, Auzani;Idris, Nik Rumzi Nik;Yatim, Abdul Halim Mohamed;Sutikno, Tole;Elbuluk, Malik E.
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.704-712
    • /
    • 2011
  • This paper describes a hybrid induction motor drive system incorporating DTC-hysteresis and Direct Self Control (DSC) schemes to achieve excellent dynamic performance. The control scheme is switched from a circular to a hexagonal flux locus whenever a dynamic condition is encountered. On the other hand, when the motor operates under steady state conditions, a circular flux locus is used. Without major modifications to the simple structure of a basic DTC, hexagonal flux locus operation is established by modifying the flux error status, before it is fed to the look-up table. The feasibility of the proposed hybrid scheme to achieve excellent control performance is verified by experimental results.

A Feasible Approach for the Unified PID Position Controller Including Zero-Phase Error Tracking Performance for Direct Drive Rotation Motor

  • Kim, Joohn-Sheok
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.74-84
    • /
    • 2009
  • The design and implementation of a high performance PID (Proportional Integral & Differential) style controller with zero-phase error tracking property is considered in this article. Unlike a ball screw driven system, the controller in a direct drive system should provide a high level of tracking performance while avoiding the problems due to the absence of the gear system. The stiff mechanical element in a direct drive system allows high precise positioning capability, but relatively high tracking ability with minimal position error is required. In this work, a feasible position controller named 'Unified PID controller' is presented. It will be shown that the function of the closed position loop can be designed into unity gain system in continuous time domain to provide minimal position error. The focus of this work is in two areas. First, easy gain tunable PID position controller without speed control loop is designed in order to construct feasible high performance drive system. Second, a simple but powerful zero phase error tracking strategy using the pre-designed function of the main control loop is presented for minimal tracking error in all operating conditions. Experimental results with a s-curve based position pattern commonly used in industrial field demonstrate the feasibility and effective performance of the approach.

Design Observable Model of Direct Drive Motor for Air Gap Estimation when Input Disturbance is Impulse signal (외란이 충격 신호일 때 공극 추정을 위한 직구동 모터의 관측 가능한 수학적 모델 수립)

  • Ki, Tae-Seok;Park, Youn-Sik;Park, Young-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.7
    • /
    • pp.627-631
    • /
    • 2012
  • Observable mathematical model of DDM (Direct Dirve Motor) was suggested. The motor that operates the object system directly is called DDM. DDM has many strong points, however, it has a significant disadvantage, that it is more sensitive to the external force than the motor with reduction gear. In other word, if the force is applied, air gap of the motor can be perturbed. This causes not only difficulty in motor control but also even more serious problem, such as the breakdown of motor. However, if the air gap variation can be estimated, it can help prevent these problems. DDM should be modeled to estimate the air gap variation. The type of researched DDM is PMSM (Permanent Magnet Synchronous Motor) and precedent model of PMSM includes only characteristics of electro-magnetic system and rotational motion. However, suggested model should also include characteristics of translational motion of rotor to estimate the air gap variation. Also, this model should satisfy observability condition, because state observer is designed based on this model.